Phylogenomics and genetic recombination detection among Matrix protein of Chandipura Virus genome: A computational approach

Authors

  • Kashish Noor Centre for Virology, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, New Delhi-110062
  • Nishi Raj Sharma Department of Education and Research, Artemis Hospital, AERF, Artemis Hospitals, Gurugram-122001
  • Mirza Sarwar Baig Centre for Virology, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, New Delhi-110062

DOI:

https://doi.org/10.51976/zbve5y64

Keywords:

Chandipura virus, matrix protein, phylogenetic analysis, Recombination detection, viral pathogenesis

Abstract

Chandipura virus (CHPV), a negative-sense (-) single-stranded (ss) RNA virus of the family Rhabdoviridae and genus Vesiculovirus, is re-emerging as a neurotropic pathogen. This virus causes encephalitis outbreaks, which kill several children within 24 hours of being symptomatic. The latest outbreak in Gujarat state, between June and August 2024, showed the severity of CHPV infections, with a 33% case fatality rate. Even though CHPV is a public health threat, its matrix (M) protein's molecular evolution and functional dynamics are unknown. This work examines CHPV's M protein's evolutionary links and genetic recombination processes, which are essential for viral assembly and budding. Phylogenetic analysis employed the NJ method, incorporating M protein sequences from BLAST searching. By using the SDT, pairwise sequence comparisons and homology analyses revealed that the CHPV Indian isolate (NC020805) shares a nucleotide identity of 78% with Lyssavirus Duvenhage virus (LVDV, NC020810) and 72% with Rabies virus (ReV, NC001542). Further, the closest relative to the Indian CHPV isolate was identified as the Jurona virus (JuV, NC039206) by performing molecular evolution and phylogenetic analysis with the help of MEGA 11 software. Our result showed five genomic recombination events analyzed using RDP methods, demonstrating strong evidence of recombination in the cases of Event 2 and Event 4, which have exceptionally low p-values. In event 2, the recombinant sequence (NC039206) has a major parent NC020805 and minor parent NC034550, with major parent recombination regions 1-1169 and 1479-15347 and minor parent 1170-1478. In event 4, a recombinant sequence (NC039206), with NC020805 (Indian isolate) as the major parent and NC020807 as the minor parent, suggests a more reliable recombination detection. Compared to other Rhabdoviruses, the CHPV's M protein is non-conserved. This heterogeneity may affect CHPV's virulence and adaptability to viral evolution and infection processes. This study of the CHPV molecular phylogenomics and recombination, specifically in the M protein gene, will enhance our horizon of understanding of host-virus interaction, assembly, and pathogenesis. It will further assist in customized diagnostics, vaccinations, and therapeutic measures to mitigate future outbreaks.

References

[1] Acute encephalitis syndrome due to Chandipura virus – India. (n.d.). Retrieved January 25, 2025, from https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON529

[2] Ahmed, M., & Lyles, D. S. (1998). Effect of vesicular stomatitis virus matrix protein on transcription directed by host RNA polymerases I, II, and III. Journal of Virology, 72(10), 8413–8419. https://doi.org/10.1128/JVI.72.10.8413-8419.1998

[3] Ahmed, M., McKenzie, M. O., Puckett, S., Hojnacki, M., Poliquin, L., & Lyles, D. S. (2003). Ability of the Matrix Protein of Vesicular Stomatitis Virus To Suppress Beta Interferon Gene Expression Is Genetically Correlated with the Inhibition of Host RNA and Protein Synthesis. Journal of Virology, 77(8), 4646. https://doi.org/10.1128/JVI.77.8.4646-4657.2003

[4] Basak, S. (2008). Chandipura virus (Rhabdoviridae), Encyclopedia of Virology.

Basak, S., Mondal, A., Polley, S., Mukhopadhyay, S., & Chattopadhyay, D. (2007). Reviewing Chandipura: A vesiculovirus in human epidemics. Bioscience Reports, 27(4–5), 275–298. https://doi.org/10.1007/s10540-007-9054-z

[5] Bhatt, P. N., & Rodrigues, F. M. (1967a). Chandipura: A new Arbovirus isolated in India from patients with febrile illness. The Indian Journal of Medical Research, 55(12), 1295–1305.

[6] Bhatt, P. N., & Rodrigues, F. M. (1967b). Chandipura: A new Arbovirus isolated in India from patients with febrile illness. The Indian Journal of Medical Research, 55(12), 1295–1305.

[7] Bisen, P., & Raghuvanshi, R. (2013). Chandipura Virus Encephalitis Epidemiology.

[8] Chadha, M. S., Arankalle, V. A., Jadi, R. S., Joshi, M. V., Thakare, J. P., Mahadev, P. V. M., & Mishra, A. C. (2005). An outbreak of Chandipura virus encephalitis in the eastern districts of Gujarat state, India. The American Journal of Tropical Medicine and Hygiene, 73(3), 566–570.

[9] Cherian, S. S., Gunjikar, R. S., Banerjee, A., Kumar, S., & Arankalle, V. A. (2012). Whole Genomes of Chandipura Virus Isolates and Comparative Analysis with Other Rhabdoviruses. PLoS ONE, 7(1), e30315. https://doi.org/10.1371/journal.pone.0030315

[10] Clewley, J. P., Bishop, D. H., Kang, C. Y., Coffin, J., Schnitzlein, W. M., Reichmann, M. E., & Shope, R. E. (1977). Oligonucleotide fingerprints of RNA species obtained from rhabdoviruses belonging to the vesicular stomatitis virus subgroup. Journal of Virology, 23(1), 152–166. https://doi.org/10.1128/JVI.23.1.152-166.1977

[11] Dhanda, V., Rodrigues, F. M., & Ghosh, S. N. (1970). Isolation of Chandipura virus from sandflies in Aurangabad. The Indian Journal of Medical Research, 58(2), 179–180.

[12] Dwibedi, B., Mohapatra, N., Rathore, S. K., Panda, M., Pati, S. S., Sabat, J., Thakur, B., Panda, S., & Kar, S. K. (2015). An outbreak of Japanese encephalitis after two decades in Odisha, India. The Indian Journal of Medical Research, 142(Suppl 1), S30–S32. https://doi.org/10.4103/0971-5916.176609

[13] Enninga, J., Levy, D., Blobel, G., & Fontoura, B. (2002). Role of Nucleoporin Induction in Releasing an mRNA Nuclear Export Block. Science (New York, N.Y.), 295, 1523–1525. https://doi.org/10.1126/science.1067861

[14] Felsenstein, J. (1985). CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP. Evolution; International Journal of Organic Evolution, 39(4), 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

[15] Fontenille, D., Traore-Lamizana, M., Trouillet, J., Leclerc, A., Mondo, M., Ba, Y., Digoutte, J. P., & Zeller, H. G. (1994). First isolations of arboviruses from phlebotomine sand flies in West Africa. The American Journal of Tropical Medicine and Hygiene, 50(5), 570–574. https://doi.org/10.4269/ajtmh.1994.50.570

[16] Gurav, Y. K., Tandale, B. V., Jadi, R. S., Gunjikar, R. S., Tikute, S. S., Jamgaonkar, A. V., Khadse, R. K., Jalgaonkar, S. V., Arankalle, V. A., & Mishra, A. C. (2010). Chandipura virus encephalitis outbreak among children in Nagpur division, Maharashtra, 2007. The Indian Journal of Medical Research, 132, 395–399.

[17] Kopecky, S. A., & Lyles, D. S. (2003a). Contrasting Effects of Matrix Protein on Apoptosis in HeLa and BHK Cells Infected with Vesicular Stomatitis Virus Are due to Inhibition of Host Gene Expression. Journal of Virology, 77(8), 4658–4669. https://doi.org/10.1128/JVI.77.8.4658-4669.2003

[18] Kopecky, S. A., & Lyles, D. S. (2003b). The cell-rounding activity of the vesicular stomatitis virus matrix protein is due to the induction of cell death. Journal of Virology, 77(9), 5524–5528. https://doi.org/10.1128/jvi.77.9.5524-5528.2003

[19] Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

[20] Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England), 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404

[21] Licata, J. M., & Harty, R. N. (2003). Rhabdoviruses and apoptosis. International Reviews of Immunology, 22(5–6), 451–476. https://doi.org/10.1080/08830180305217

[22] Licata, J. M., Simpson-Holley, M., Wright, N. T., Han, Z., Paragas, J., & Harty, R. N. (2003). Overlapping Motifs (PTAP and PPEY) within the Ebola Virus VP40 Protein Function Independently as Late Budding Domains: Involvement of Host Proteins TSG101 and VPS-4. Journal of Virology, 77(3), 1812–1819. https://doi.org/10.1128/JVI.77.3.1812-1819.2003

[23] Mavale, M. S., Fulmali, P. V., Geevarghese, G., Arankalle, V. A., Ghodke, Y. S., Kanojia, P. C., & Mishra, A. C. (2006). Venereal transmission of Chandipura virus by Phlebotomus papatasi (Scopoli). American Journal of Tropical Medicine & Hygiene, 75(6), Article 6.

[24] Muhire, B. M., Varsani, A., & Martin, D. P. (2014). SDT: A Virus Classification Tool Based on Pairwise Sequence Alignment and Identity Calculation. PLoS ONE, 9(9), e108277. https://doi.org/10.1371/journal.pone.0108277

[25] Operational manual on indoor residual spraying: Control of vectors of malaria, Aedes-borne diseases, Chagas disease, leishmaniases and lymphatic filariasis. (n.d.). Retrieved January 25, 2025, from https://www.who.int/publications/i/item/9789240083998

(PDF) Emerging Epidemics: Management and Control. (n.d.). ResearchGate. Retrieved January23,2025, from https://www.researchgate.net/publication/349549463_Emerging_Epidemics_

Management_and_Control

[26] Peiris, J. S., Dittus, W. P., & Ratnayake, C. B. (1993). Seroepidemiology of dengue and other arboviruses in a natural population of toque macaques (Macaca sinica) at Polonnaruwa, Sri Lanka. Journal of Medical Primatology, 22(4), 240–245.

[27] Raha, T., Samal, E., Majumdar, A., Basak, S., Chattopadhyay, D., & Chattopadhyay, D. J. (2000). N-terminal region of P protein of Chandipura virus is responsible for phosphorylation-mediated homodimerization. Protein Engineering, 13(6), 437–444. https://doi.org/10.1093/protein/13.6.437

[28] Rajasekharan, S., Kumar, K., Rana, J., Gupta, A., Chaudhary, V. K., & Gupta, S. (2015). Host interactions of Chandipura virus matrix protein. Acta Tropica, 149, 27–31. https://doi.org/10.1016/j.actatropica.2015.04.027

[29] Rao, B. L., Basu, A., Wairagkar, N. S., Gore, M. M., Arankalle, V. A., Thakare, J. P., Jadi, R. S., Rao, K. A., & Mishra, A. C. (2004). A large outbreak of acute encephalitis with high fatality rate in children in Andhra Pradesh, India, in 2003, associated with Chandipura virus. Lancet (London, England), 364(9437), 869–874. https://doi.org/10.1016/S0140-6736(04)16982-1

[30] Sapkal, G. N., Sawant, P. M., & Mourya, D. T. (2018). Chandipura Viral Encephalitis: A Brief Review. The Open Virology Journal, 12, 44–51. https://doi.org/10.2174/1874357901812010044

[31] Sharma, N. R., Gadhave, K., Kumar, P., Saif, M., Khan, M. M., Sarkar, D. P., Uversky, V. N., & Giri, R. (2021). Analysis of the dark proteome of Chandipura virus reveals maximum propensity for intrinsic disorder in phosphoprotein. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-92581-6

[32] Sudeep, A. B., Bondre, V. P., Gurav, Y. K., Gokhale, M. D., Sapkal, G. N., Mavale, M. S., George, R. P., & Mishra, A. C. (2014). Isolation of Chandipura virus (Vesiculovirus: Rhabdoviridae) from Sergentomyia species of sandflies from Nagpur, Maharashtra, India. The Indian Journal of Medical Research, 139(5), 769–772.

[33] Sudeep, A. B., Gurav, Y. K., & Bondre, V. P. (2016). Changing clinical scenario in Chandipura virus infection. The Indian Journal of Medical Research, 143(6), 712–721. https://doi.org/10.4103/0971-5916.191929

[34] Tamura, K., & Kumar, S. (2002). Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Molecular Biology and Evolution, 19(10), 1727–1736. https://doi.org/10.1093/oxfordjournals.molbev.a003995

[35] Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11030–11035. https://doi.org/10.1073/pnas.0404206101

[36] Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120

[37] Tandale, B. V., Tikute, S. S., Arankalle, V. A., Sathe, P. S., Joshi, M. V., Ranadive, S. N., Kanojia, P. C., Eshwarachary, D., Kumarswamy, M., & Mishra, A. C. (2008). Chandipura virus: A major cause of acute encephalitis in children in North Telangana, Andhra Pradesh, India. Journal of Medical Virology, 80(1), 118–124. https://doi.org/10.1002/jmv.21041

[38] Van Ranst, M. (2004). Chandipura virus: An emerging human pathogen? Lancet (London, England), 364(9437), 821–822. https://doi.org/10.1016/S0140-6736(04)16995-X

Published

2025-04-10

Issue

Section

Early Access Articles

How to Cite

Kashish Noor, Nishi Raj Sharma, & Mirza Sarwar Baig. (2025). Phylogenomics and genetic recombination detection among Matrix protein of Chandipura Virus genome: A computational approach. International Journal of Advance Research and Innovation(IJARI, 2347-3258), 13(01). https://doi.org/10.51976/zbve5y64