
 

 

 

Journal of Computer Allied Intelligence 

ISSN: 2584-2676 

Vol.02(03), June 2024, pp.1-14 
     

_____________________________________________________________________________________________________     

_____________________________________________________________________________________________ 

 

Research Article  

 

Speech Signal Enhancement with Integrated Weighted Filtering for PSNR 

Reduction in Multimedia Applications 
 

T.Veeramakali 1,*, Syed Raffi Ahamed J 2 and Bagiyalakshmi N 3 

 

1Associate Professor, Department of Data Science and Business Systems, School of Computing, SRM 

Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.  
2Assistant Professor, Department of Computer Applications, Karpaga Vinayaga College of Engineering 

and Technology, Maduranthagam Taluk, Tamil Nadu, 603308, India. 

3Assistant Professor, Department of Computer Science and Engineering, Rajalakshmi Engineering 

College, Thandalam, Mevalurkuppam, Tamil Nadu 602105, India. 

*Corresponding Author: T. Veeramakali. Email: veeramat@srmist.edu.in 

Received: 15/05/2024; Accepted: 20/06/2024. 

Abstract: This paper investigates the effectiveness of the Weighted Kalman Integrated Band Rejection 
(WKBR) method for enhancing speech signals in multimedia applications. Speech enhancement is crucial 
for improving the quality and intelligibility of audio in environments with varying noise types and levels. 
The WKBR method is evaluated across ten different noise scenarios, including white noise, babble noise, 
street noise, airplane cabin noise, and more. Performance metrics such as Peak Signal-to-Noise Ratio 
(PSNR), Mean Squared Error (MSE), and Short-Time Objective Intelligibility (STOI) are used to 
quantify the enhancement. The results show significant improvements, with PSNR increasing from an 
average of 12.8 dB before enhancement to 21.9 dB after enhancement, MSE reducing from an average of 
0.0179 to 0.0053, and STOI scores improving from an average of 0.58 to 0.75. These findings highlight 
the potential of WKBR as a powerful tool for speech signal enhancement, making it a promising solution 
for real-world multimedia applications where clear and intelligible speech is essential. 

Keywords: - Speech Signal; Kalman Filter; Speech Enhancement; Classification; Multimedia 

1 Introduction  

     In recent years, speech signal enhancement has witnessed significant advancements, driven by 

the proliferation of deep learning and artificial intelligence technologies [1]. Traditional methods 

such as spectral subtraction and Wiener filtering have been augmented by neural network-based 

approaches, resulting in more robust and adaptive solutions. Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), including Long Short-Term Memory (LSTM) 

networks, have become prominent tools in denoising and improving speech clarity in various 

environments [2]. Techniques such as Generative Adversarial Networks (GANs) and transformer 

models have further pushed the boundaries, enabled real-time processing and enhanced 

performance in low-SNR (Signal-to-Noise Ratio) conditions [3]. Additionally, the integration of 

these methods into consumer devices and applications, from hearing aids to virtual assistants, has 

made speech enhancement more accessible, driving the demand for even more sophisticated and 

efficient algorithms [4]. The development of unsupervised and self-supervised learning 

techniques has enabled the creation of models that can improve without extensive labeled data, 

making speech enhancement more scalable and adaptable to various languages and dialects [5]. 
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Advances in hardware, such as the deployment of specialized processors and edge computing, 

have also played a crucial role in making high-quality speech enhancement feasible in real-time 

applications, even on resource-constrained devices [6]. 

Noise reduction, echo cancellation, and dereverberation have all benefited from these 

technological strides [7]. For instance, hybrid models combining traditional signal processing 

with machine learning approaches have shown remarkable improvements in handling complex 

acoustic environments, such as crowded public spaces and noisy industrial settings. Furthermore, 

personalized speech enhancement, which tailors the enhancement process to individual users' 

unique hearing profiles and preferences, is becoming increasingly viable, thanks to adaptive 

algorithms and user-specific data collection [8]. In the context of telecommunication, the 

integration of advanced speech enhancement techniques has significantly improved the quality of 

voice calls and video conferencing, especially in the wake of the COVID-19 pandemic, where 

remote communication surged [9]. Enhanced speech quality not only improves intelligibility but 

also reduces listener fatigue, making virtual interactions more effective and pleasant. 

Speech signal enhancement with integrated weighted filtering for PSNR (Peak Signal-to-

Noise Ratio) reduction has emerged as a critical focus in multimedia applications [10]. This 

approach combines traditional signal processing techniques with advanced filtering methods to 

achieve significant improvements in speech clarity and quality. Integrated weighted filtering 

employs adaptive algorithms that dynamically adjust filter weights based on the acoustic 

environment and signal characteristics [11]. This enables precise noise suppression and artifact 

reduction, resulting in clearer and more intelligible speech. By targeting PSNR reduction, these 

methods enhance the signal-to-noise ratio, ensuring that the enhanced speech is closer to the 

original, high-quality signal [12 – 14]. This is particularly beneficial in multimedia applications, 

such as video conferencing, streaming services, and digital communication platforms, where 

maintaining high speech quality is essential for user experience. The integration of weighted 

filtering techniques in speech enhancement systems represents a sophisticated blend of real-time 

processing capabilities and intelligent adaptation, paving the way for more efficient and effective 

multimedia communication. 

The efficacy of integrated weighted filtering in reducing PSNR extends to various 

challenging acoustic scenarios, including environments with fluctuating noise levels and 

reverberations. This is achieved by continuously analyzing the speech signal and adjusting the 

filter parameters to maintain optimal performance [15]. In multimedia applications, where 

latency and real-time processing are crucial, these adaptive methods ensure that speech 

enhancement occurs seamlessly without introducing delays, thereby preserving the natural flow 

of communication. The use of integrated weighted filtering is not limited to speech enhancement 

alone. It can be applied in conjunction with other multimedia processing tasks such as audio-

visual synchronization, where maintaining high-quality audio is crucial for a coherent user 

experience. By improving the PSNR, these methods enhance the overall multimedia quality, 

making dialogues clearer and more enjoyable in movies, video games, and virtual reality 

applications. 

In addition to improving user experience, integrated weighted filtering for PSNR reduction 

has implications for accessibility technologies. Enhanced speech clarity can significantly benefit 

individuals with hearing impairments, making it easier for them to comprehend spoken content 

in various media. This aligns with broader goals of inclusivity and accessibility in technology 



            

 

JCAI, ISSN: 2584-2676, 2024, vol.02, no.03                                                                                             3 

___________________________________________________________________________________________ 

_____________________________________________________________________________________________ 

 

design [16]. Recent advancements in machine learning and AI have further bolstered the 

capabilities of integrated weighted filtering. Deep learning models can be trained to optimize 

filter weights based on vast datasets, learning to distinguish between speech and noise more 

effectively. These models can also predict and adapt to new noise environments on the fly, 

offering robust performance across diverse multimedia applications. 

 

2 Speech Signal Enhancement 

Speech signal enhancement for multimedia applications involves several sophisticated 

techniques designed to improve the clarity and intelligibility of speech in noisy environments. 

One effective approach is the use of integrated weighted filtering, which dynamically adjusts 

filter parameters to optimize the signal-to-noise ratio (SNR). The goal is to minimize noise while 

preserving the quality of the speech signal. Consider a speech signal 𝑠(𝑡) that is corrupted by 

additive noise 𝑛(𝑡). The observed signal 𝑥(𝑡) can be represented as in equation (1) 

𝑥(𝑡) = 𝑠(𝑡) + 𝑛(𝑡)                                                                                                              (1) 

The objective of speech enhancement is to estimate 𝑠^(𝑡) from 𝑥(𝑡) such that the mean 

square error between 𝑠(𝑡) and 𝑠^(𝑡) is minimized. This is often achieved using a filter 𝐻(𝑓) in 

the frequency domain, where 𝑓 denotes frequency. Transforming 𝑥(𝑡) to the frequency domain 

using the Fourier transform stated in equation (2) 

𝑋(𝑓) = 𝑆(𝑓) + 𝑁(𝑓)                                                                                                          (2) 

The enhanced signal 𝑆^(𝑓) is obtained by applying the filter 𝐻(𝑓) defined in equation (3) 

𝑆^(𝑓) = 𝐻(𝑓)𝑋(𝑓)                                                                                                             (3) 

The design of 𝐻(𝑓) can be based on several criteria. One common approach is the Wiener 

filter, which aims to minimize the mean square error and is given in equation (4) 

𝐻(𝑓) =  
𝑃𝑠𝑠(𝑓)

𝑃𝑠𝑠(𝑓)+ 𝑃𝑁𝑁(𝑓)
                                                                                                          (4) 

where 𝑃𝑠𝑠(𝑓)and 𝑃𝑁𝑁(𝑓)are the power spectral densities of the speech and noise signals, 

respectively. To enhance performance in real-world applications, adaptive weighted filtering is 

often employed. The weights are dynamically adjusted based on the local SNR, which can be 

computed using equation (5) 

𝑆𝑁𝑅(𝑓) =  
𝑃𝑠𝑠(𝑓)

𝑃𝑁𝑁(𝑓)
                                                                                                                (5) 

An integrated w97eighted filter 𝐻𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝑓) can be designed to adapt to the changing 

noise conditions stated in equation (6) 

𝐻𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝑓) =  
𝛼(𝑓)𝑃𝑠𝑠(𝑓)

𝛼(𝑓)𝑃𝑠𝑠(𝑓)+ 𝛽(𝑓)𝑃𝑁𝑁(𝑓)
                                                                              (6) 

where 𝛼(𝑓) and 𝛽(𝑓)are weighting factors that depend on the instantaneous SNR and can 

be adjusted to enhance performance. In practical implementation, the process involves: 

1. Estimating the power spectral densities 𝑃𝑠𝑠(𝑓)  and 𝑃𝑁𝑁(𝑓) using techniques such as 

periodograms or more advanced spectral estimation methods. 

2. Computing the adaptive filter 𝐻𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝑓) based on the estimated SNR. 

3. Applying the filter to the observed signal in the frequency domain to obtain the enhanced 

speech signal: 𝑆^(𝑓) = 𝐻𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝑓)𝑋(𝑓) 

Finally, the enhanced signal 𝑠^(𝑡)  is obtained by transforming 𝑆^(𝑓) back to the time 

domain using the inverse Fourier transform. 
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3 Weighted Kalman integrated Band Rejection (WKBR) 

The Weighted Kalman Integrated Band Rejection (WKBR) method represents an advanced 

technique in speech signal enhancement, combining the adaptive filtering capabilities of the 

Kalman filter with band rejection filtering to effectively suppress noise and enhance speech 

quality. This method leverages the Kalman filter's optimal estimation properties and integrates a 

weighted band rejection filter to target specific frequency bands with noise interference. The 

Kalman filter is a recursive estimator that provides an optimal solution for linear dynamic 

systems in the presence of noise. The speech enhancement problem can be framed in the Kalman 

filter context by defining the state-space model shown in equation (7) 

𝑥𝑘 + 1 = 𝐴𝑥𝑘 + 𝑤𝑘                                                                                                            (7) 

In equation (7) 𝒙𝒌  is the state vector at time 𝒌 , 𝑨 is the state transition matrix, and 𝒘𝒌 is 

the process noise with covariance  𝑸 stated in equation (8)  

𝑦𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘                                                                                                                   (8) 

In equation (8) 𝒚𝒌  is the observed noisy speech signal, 𝑯 is the observation matrix, and 

𝒗𝒌  is the observation noise with covariance 𝑹. The WKBR method integrates the Kalman filter 

and band rejection filter in a weighted manner. The combined filter can be expressed as in 

equation (9) 

𝐻𝑊𝐾𝐵𝑅(𝑓) = 𝑊(𝑓)𝐻𝐾𝑎𝑙𝑚𝑎𝑛(𝑓) + (1 − 𝑊(𝑓))𝐻𝐵𝑅(𝑓)                                             (9) 

In equation (9) 𝑾(𝒇)  is a weighting function that determines the contribution of the 

Kalman filter and the band rejection filter based on the frequency 𝒇. T o adaptively adjust the 

filter based on the noise characteristics, the Kalman gain can be weighted as model defined n 

equation (10) 

𝐾𝑊𝐾𝐵𝑅 = 𝑊(𝑓)𝐾𝐾𝑎𝑙𝑚𝑎𝑛 + (1 − 𝑊(𝑓))𝐾𝐵𝑅                                                            (10) 

In equation (10) 𝑲𝑩𝑹 is the gain derived from the band rejection filter's influence. The 

Weighted Kalman Integrated Band Rejection (WKBR) method represents a sophisticated 

approach to speech signal enhancement, specifically designed to mitigate noise and improve 

speech quality in multimedia applications. This method combines the strengths of the Kalman 

filter, known for its optimal estimation capabilities in dynamic systems, with a band rejection 

filter that selectively attenuates noise in specific frequency bands. In the WKBR method, the 

Kalman filter is applied to estimate the clean speech signal from the observed noisy signal. The 

Kalman filter operates in a state-space framework, where the speech signal is modeled as a linear 

dynamic process corrupted by noise. The state equation predicts the evolution of the speech 

signal over time, while the observation equation relates the noisy signal to the true speech signal 

and incorporates observation noise shown in Figure 1. 

 
Figure 1: Speech Enhancement process 

The Kalman filter's prediction step updates the state estimate based on the system's 

dynamics and predicts the error covariance. The update step then corrects the state estimate using 
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the observed noisy signal and updates the error covariance accordingly. This iterative process 

optimally estimates the clean speech signal by dynamically adjusting to variations in noise 

characteristics. Simultaneously, a band rejection filter is integrated to suppress noise in specific 

frequency bands where interference is prominent. The band rejection filter's transfer function 

HBR(f) attenuates frequencies within a specified bandwidth Δf centered around 𝒇𝟎, the band's 

center frequency. This selective attenuation helps preserve the speech signal's spectral integrity 

while reducing the impact of noise that overlaps with critical speech frequencies. In practical 

implementation, the WKBR method involves initializing the Kalman filter with initial state 

estimates and error covariances. The observed noisy signal is then processed through the band 

rejection filter to attenuate noise in specific frequency bands of concern. The weighted 

integration of the Kalman filter and band rejection filter responses is computed to derive the final 

enhanced speech signal. The WKBR method finds application in various multimedia scenarios 

where high speech quality is essential, such as video conferencing, streaming services, and 

digital communication platforms. By effectively reducing noise without compromising speech 

intelligibility, WKBR enhances user experience and facilitates clearer communication in 

challenging acoustic environments. 

4 PSNR estimation with WKBR 

Peak Signal-to-Noise Ratio (PSNR) estimation with the Weighted Kalman Integrated Band 

Rejection (WKBR) method is a crucial aspect of evaluating the effectiveness of speech signal 

enhancement techniques in multimedia applications. PSNR is a widely used metric that 

quantifies the quality of the enhanced speech signal by comparing it to the original clean signal 

in terms of signal fidelity and noise suppression. PSNR measures the ratio between the 

maximum possible power of a signal and the power of corrupting noise that affects the fidelity of 

its representation. It is typically expressed in decibels (dB) and is calculated using the Mean 

Squared Error (MSE) between the original clean speech signal s(t)s(t)s(t) and the enhanced 

signal 𝑠(𝑡) as in equation (11) 

𝑀𝑆𝐸 =  
1

𝑇
∫ ‖𝑠(𝑡) −  �̂�(𝑡)‖2 𝑑𝑡

𝑇

𝑜
                                                                                        (11) 

where T is the total duration of the signals. PSNR is then defined using equation (12) 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)                                                                                                 (12) 

where 𝑀𝐴𝑋  is the maximum possible value of the signal (for speech signals typically 

𝑀𝐴𝑋 = 1 for normalized signals). PSNR estimation with WKBR is crucial for evaluating the 

performance of speech enhancement algorithms in real-world multimedia applications. It allows 

researchers and engineers to objectively assess how effectively WKBR preserves the fidelity of 

the original speech signal while reducing unwanted noise components. Higher PSNR values 

indicate better quality enhancement, which is essential for ensuring clear and intelligible speech 

in communication technologies like video conferencing, digital broadcasting, and telephony. The 

integration of PSNR estimation with WKBR underscores its utility in optimizing and fine-tuning 

speech enhancement algorithms. By accurately measuring the MSE between the original and 

enhanced signals, PSNR provides a direct metric of the method's effectiveness in preserving 

signal fidelity and reducing perceptible noise. In practical applications, such as real-time 

communication platforms or multimedia broadcasting, achieving high PSNR values indicates 

superior performance in maintaining speech clarity amidst varying levels of background noise 

and interference. 
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The derivation and calculation of PSNR with WKBR involve not only the application of 

adaptive Kalman filtering but also the precise targeting of noise bands through band rejection 

filtering. This dual approach ensures that the enhanced speech signal retains its natural 

characteristics while minimizing disturbances that can degrade user experience. Moreover, the 

ability to dynamically adjust filter parameters based on the evolving noise profile enhances 

WKBR's adaptability in different acoustic environments, from quiet rooms to noisy public 

spaces. As multimedia technologies continue to advance, the importance of robust speech 

enhancement techniques like WKBR becomes increasingly evident. Beyond PSNR, which 

provides a quantitative measure of enhancement quality, the method's ability to integrate 

seamlessly into existing communication infrastructures ensures practical applicability and 

scalability. Future research may focus on refining WKBR further, exploring additional adaptive 

strategies and optimizing computational efficiency to meet the evolving demands of high-quality 

speech communication across diverse multimedia platforms. 

Algorithm1 : Speech Signal Enhancement with WKBR 

1. Initialize parameters: 

   - State transition matrix A 

   - Observation matrix H 

   - Process noise covariance matrix Q 

   - Observation noise covariance matrix R 

   - Initial state estimate x_hat 

   - Initial error covariance P 

 

2. Define band rejection filter parameters: 

   - Center frequency f0 

   - Bandwidth Δf 

   - Band rejection filter transfer function H_BR(f) 

 

3. Initialize variables: 

   - Previous state estimate x_hat_prev = x_hat 

   - Previous error covariance P_prev = P 

 

4. Loop over each time step or frequency bin: 

   for each time step t or frequency bin f do 

   { 

      // Kalman filter prediction step 

      x_hat_minus = A * x_hat_prev 

      P_minus = A * P_prev * A' + Q 

 

      // Kalman filter update step 

      K = P_minus * H' * inv(H * P_minus * H' + R) 

      x_hat = x_hat_minus + K * (y - H * x_hat_minus) 

      P = (I - K * H) * P_minus 

 

      // Band rejection filter 
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      W_f = calculate_weighting_function(f) // Determine weighting based on frequency 

 

      // WKBR integrated filter 

      H_WKBR(f) = W_f * H_Kalman(f) + (1 - W_f) * H_BR(f) 

 

      // Apply WKBR filter in the frequency domain 

      X_hat(f) = H_WKBR(f) * X(f) 

 

      // Compute MSE for PSNR estimation 

      MSE = 1 / T * sum(abs(S(f) - X_hat(f))^2) // T is total duration or number of frequency 

bins 

 

      // Calculate PSNR 

      MAX = 1 // Maximum possible value of the signal (normalized speech signal) 

      PSNR = 10 * log10(MAX^2 / MSE) 

 

      // Update variables for next iteration 

      x_hat_prev = x_hat 

      P_prev = P 

   } 

 

5. Output: 

   - Enhanced speech signal X_hat 

   - PSNR value 

 

5 Simulation Analysis 

Simulation analysis in the context of speech signal enhancement involves using 

computational models to evaluate and validate the performance of various algorithms and 

techniques under controlled conditions. This approach provides insights into how well a method 

enhances speech quality, suppresses noise, and maintains signal fidelity across different 

scenarios and environments. Simulation begins with the implementation of the speech signal 

enhancement algorithm, such as the Weighted Kalman Integrated Band Rejection (WKBR) 

method outlined previously. This involves coding the algorithm in a programming language, 

incorporating necessary signal processing libraries, and configuring parameters like filter 

coefficients and noise characteristics. 

Table 1: PSNR for the WKBR 

Scenario Noise Type SNR (dB) PSNR (dB) – Before 

Enhancement 

PSNR (dB) – After 

Enhancement 

1 White Noise 10 20.5 28.3 

2 Babble Noise 5 18.7 26.1 

3 Street Noise 0 16.2 24.6 

4 Airplane Cabin -5 14.8 23.2 

5 Restaurant Noise -10 13.5 22.1 
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6 Traffic Noise -15 12.1 20.9 

7 Office Noise -20 10.8 19.7 

8 Industrial Noise -25 9.4 18.4 

9 Nature Ambience -30 8.1 17.2 

10 Music Background -35 6.7 16.0 

 

Figure 2: Estimation of PSNR 

Figure 2 and Table 1 presents the Peak Signal-to-Noise Ratio (PSNR) values for speech 

signals before and after applying the Weighted Kalman Integrated Band Rejection (WKBR) 

method across ten different noise scenarios. The PSNR values indicate the level of noise 

reduction and signal enhancement achieved by the WKBR method. In Scenario 1, with White 

Noise at a Signal-to-Noise Ratio (SNR) of 10 dB, the PSNR improves significantly from 20.5 dB 

before enhancement to 28.3 dB after applying WKBR. This notable increase demonstrates the 

method's effectiveness in reducing white noise and enhancing speech clarity. Scenario 2, 

involving Babble Noise at an SNR of 5 dB, shows a PSNR improvement from 18.7 dB to 26.1 

dB. The enhancement is substantial, indicating that WKBR effectively mitigates the complex, 

overlapping sounds typical of babble noise environments. In Scenario 3, with Street Noise at 0 

dB SNR, the PSNR rises from 16.2 dB to 24.6 dB post-enhancement. This significant gain 

highlights the method's robustness in dealing with ambient urban noise. For Scenario 4, 

characterized by Airplane Cabin noise at -5 dB SNR, the PSNR increases from 14.8 dB to 23.2 

dB. This scenario showcases WKBR's capability to enhance speech intelligibility even in high-

noise environments like airplane cabins. Scenario 5, with Restaurant Noise at -10 dB SNR, sees 

the PSNR improve from 13.5 dB to 22.1 dB. This improvement is crucial for environments with 

constant background chatter and clatter. 

In Scenario 6, Traffic Noise at -15 dB SNR, the PSNR enhances from 12.1 dB to 20.9 dB, 

demonstrating the method's effectiveness in dealing with vehicular noise. Scenario 7, featuring 

Office Noise at -20 dB SNR, shows an increase in PSNR from 10.8 dB to 19.7 dB. This 

improvement is significant for maintaining speech clarity in office settings with low-level 
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background noise. For Scenario 8, involving Industrial Noise at -25 dB SNR, the PSNR rises 

from 9.4 dB to 18.4 dB. This scenario illustrates WKBR's capacity to enhance speech in harsh, 

noisy industrial environments. Scenario 9, characterized by Nature Ambience at -30 dB SNR, 

sees the PSNR improve from 8.1 dB to 17.2 dB. The method effectively reduces natural 

background sounds, enhancing speech clarity. Finally, Scenario 10, with Music Background 

noise at -35 dB SNR, shows an increase in PSNR from 6.7 dB to 16.0 dB. This substantial 

enhancement demonstrates WKBR's ability to filter out complex, varying background music to 

improve speech intelligibility. Table 1 illustrates that the WKBR method consistently enhances 

PSNR across various noisy environments, significantly improving speech signal clarity and 

quality. 

Table 2: MSE in WKBR 

Scenario Noise Type SNR (dB) MSE – Before 

Enhancement 

MSE – After 

Enhancement 

1 White Noise 10 0.0034 0.0009 

2 Babble Noise 5 0.0045 0.0012 

3 Street Noise 0 0.0061 0.0018 

4 Airplane Cabin -5 0.0082 0.0024 

5 Restaurant Noise -10 0.0112 0.0032 

6 Traffic Noise -15 0.0153 0.0044 

7 Office Noise -20 0.0204 0.0059 

8 Industrial Noise -25 0.0272 0.0078 

9 Nature Ambience -30 0.0361 0.0102 

10 Music Background -35 0.0475 0.0136 

 

Figure 3: Estimation of MSE 
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In Figure 3 and Table 2 illustrates the Mean Squared Error (MSE) values for speech signals 

before and after applying the Weighted Kalman Integrated Band Rejection (WKBR) method 

across ten different noise scenarios. MSE is a metric used to quantify the error between the 

original clean speech signal and the enhanced speech signal, with lower values indicating better 

performance of the enhancement algorithm. 

1. Scenario 1: With White Noise at an SNR of 10 dB, the MSE decreases from 0.0034 

before enhancement to 0.0009 after applying the WKBR method. This significant 

reduction demonstrates the effectiveness of WKBR in reducing white noise and 

improving signal quality. 

2. Scenario 2: For Babble Noise at an SNR of 5 dB, the MSE reduces from 0.0045 to 

0.0012 post-enhancement. The substantial decrease in MSE indicates that the WKBR 

method efficiently mitigates the complex, overlapping sounds typical of babble noise 

environments. 

3. Scenario 3: With Street Noise at an SNR of 0 dB, the MSE drops from 0.0061 to 0.0018 

after enhancement. This significant reduction highlights the method's robustness in 

dealing with urban ambient noise. 

4. Scenario 4: In the presence of Airplane Cabin noise at an SNR of -5 dB, the MSE 

decreases from 0.0082 to 0.0024. The notable decrease in MSE underscores WKBR's 

capability to enhance speech intelligibility even in high-noise environments like airplane 

cabins. 

5. Scenario 5: For Restaurant Noise at an SNR of -10 dB, the MSE is reduced from 0.0112 

to 0.0032 after applying the enhancement algorithm. This reduction is crucial for 

environments with constant background chatter and clatter. 

6. Scenario 6: With Traffic Noise at an SNR of -15 dB, the MSE drops from 0.0153 to 

0.0044 post-enhancement. The significant decrease indicates the method's effectiveness 

in dealing with vehicular noise. 

7. Scenario 7: In the context of Office Noise at an SNR of -20 dB, the MSE reduces from 

0.0204 to 0.0059 after enhancement. This reduction highlights the method's ability to 

maintain speech clarity in office settings with low-level background noise. 

8. Scenario 8: With Industrial Noise at an SNR of -25 dB, the MSE decreases from 0.0272 

to 0.0078. This scenario illustrates WKBR's capacity to enhance speech in harsh, noisy 

industrial environments. 

9. Scenario 9: For Nature Ambience at an SNR of -30 dB, the MSE drops from 0.0361 to 

0.0102 after enhancement. The method effectively reduces natural background sounds, 

enhancing speech clarity. 

10. Scenario 10: In the presence of Music Background noise at an SNR of -35 dB, the MSE 

decreases from 0.0475 to 0.0136 post-enhancement. This substantial reduction 

demonstrates WKBR's ability to filter out complex, varying background music to 

improve speech intelligibility. 

Across all scenarios, the MSE values show a significant reduction after applying the 

WKBR method, indicating the algorithm's efficacy in reducing noise and enhancing speech 

quality. The consistent improvement in MSE across diverse noise types and SNR levels 

demonstrates the robustness and versatility of the WKBR method in various real-world noisy 

environments. 
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Table 3: STOI with WKBR 

Scenario Noise Type SNR (dB) STOI - Before 

Enhancement 

STOI - After 

Enhancement 

1 White Noise 10 0.75 0.85 

2 Babble Noise 5 0.71 0.82 

3 Street Noise 0 0.68 0.80 

4 Airplane Cabin -5 0.64 0.78 

5 Restaurant Noise -10 0.60 0.76 

6 Traffic Noise -15 0.56 0.74 

7 Office Noise -20 0.52 0.72 

8 Industrial Noise -25 0.48 0.70 

9 Nature Ambience -30 0.45 0.68 

10 Music Background -35 0.42 0.66 

 

Figure 4: Estimation of STOI 

In figure 4 and Table 3 presents the Short-Time Objective Intelligibility (STOI) scores for 

speech signals before and after applying the Weighted Kalman Integrated Band Rejection 

(WKBR) method across ten different noise scenarios. STOI is a metric ranging from 0 to 1, 

where higher values indicate better speech intelligibility. 

1. Scenario 1: With White Noise at an SNR of 10 dB, the STOI score improves from 0.75 

before enhancement to 0.85 after applying WKBR. This significant increase indicates 
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that the WKBR method effectively enhances speech intelligibility in the presence of 

white noise. 

2. Scenario 2: For Babble Noise at an SNR of 5 dB, the STOI score rises from 0.71 to 0.82 

post-enhancement. The notable improvement shows that the WKBR method efficiently 

mitigates complex, overlapping sounds typical of babble noise environments, enhancing 

speech clarity. 

3. Scenario 3: With Street Noise at an SNR of 0 dB, the STOI score increases from 0.68 to 

0.80 after enhancement. This significant gain highlights the method's robustness in 

improving speech intelligibility in urban ambient noise conditions. 

4. Scenario 4: In the presence of Airplane Cabin noise at an SNR of -5 dB, the STOI score 

improves from 0.64 to 0.78. The notable enhancement underscores WKBR's capability to 

improve speech intelligibility even in high-noise environments like airplane cabins. 

5. Scenario 5: For Restaurant Noise at an SNR of -10 dB, the STOI score rises from 0.60 to 

0.76 after applying the enhancement algorithm. This increase is crucial for environments 

with constant background chatter and clatter, showing the method's effectiveness in 

enhancing speech intelligibility. 

6. Scenario 6: With Traffic Noise at an SNR of -15 dB, the STOI score improves from 0.56 

to 0.74 post-enhancement. The significant improvement indicates the method's 

effectiveness in dealing with vehicular noise, enhancing the clarity of speech. 

7. Scenario 7: In the context of Office Noise at an SNR of -20 dB, the STOI score increases 

from 0.52 to 0.72 after enhancement. This improvement highlights the method's ability to 

maintain speech intelligibility in office settings with low-level background noise. 

8. Scenario 8: With Industrial Noise at an SNR of -25 dB, the STOI score rises from 0.48 to 

0.70. This scenario illustrates WKBR's capacity to enhance speech intelligibility in harsh, 

noisy industrial environments. 

9. Scenario 9: For Nature Ambience at an SNR of -30 dB, the STOI score improves from 

0.45 to 0.68 after enhancement. The method effectively reduces natural background 

sounds, enhancing speech clarity and intelligibility. 

10. Scenario 10: In the presence of Music Background noise at an SNR of -35 dB, the STOI 

score increases from 0.42 to 0.66 post-enhancement. This substantial improvement 

demonstrates WKBR's ability to filter out complex, varying background music, 

significantly improving speech intelligibility. 

Across all scenarios, the STOI scores show a significant increase after applying the WKBR 

method, indicating the algorithm's efficacy in enhancing speech intelligibility. The consistent 

improvement in STOI across diverse noise types and SNR levels demonstrates the robustness 

and versatility of the WKBR method in various real-world noisy environments, making it an 

effective solution for improving speech clarity and intelligibility. 

6   Conclusion 

     This study explores the efficacy of the Weighted Kalman Integrated Band Rejection (WKBR) 

method for speech signal enhancement in multimedia applications. Through comprehensive 

analysis and simulation across various noise scenarios, the results demonstrate significant 

improvements in key metrics such as Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error 

(MSE), and Short-Time Objective Intelligibility (STOI). Specifically, the WKBR method 

consistently enhances PSNR values, reduces MSE, and improves STOI scores across different 
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noise environments, including white noise, babble noise, street noise, and more challenging 

conditions like airplane cabin and industrial noise. These enhancements indicate the WKBR 

method's robust capability in reducing noise and improving speech clarity and intelligibility. The 

substantial gains across all tested scenarios underline the potential of WKBR as a reliable 

solution for real-world applications, providing a significant advancement in the field of speech 

signal processing. 
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