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Abstract: In IoT healthcare systems, securing sensitive medical data while ensuring efficient data 

management remains a critical challenge. This paper proposes and evaluates the Blockchain 

Authentication Hashing Data Aggregation (BAHDA) model as a solution to enhance data integrity, 

security, and operational efficiency. The BAHDA model leverages blockchain technology to implement 

robust authentication mechanisms, cryptographic hashing for data integrity, and decentralized data 

aggregation to mitigate risks associated with centralized data storage. Through experimentation and 

analysis, our study demonstrates substantial improvements in key performance metrics. Specifically, 

BAHDA achieves a throughput of up to 10,000 messages per second (messages/sec) with 50 nodes, 

showcasing its scalability in handling large volumes of healthcare data. Latency is minimized to 6 

milliseconds (ms), and delay reduced to 3 ms, ensuring rapid data transmission and processing critical for 

real-time healthcare applications. Furthermore, comparative analysis across different types of nodes—IoT 

devices, edge nodes, fog nodes, and cloud servers—illustrates their respective contributions to system 

performance. Cloud servers exhibit the highest throughput of 5000 messages/sec, lowest latency of 2 ms, 

and minimal delay of 1 ms, underscoring their role in supporting intensive data processing tasks and 

complex analytics. the BAHDA model proves to be a promising framework for securing and managing 

healthcare data in IoT environments, offering enhanced data integrity, security, and operational efficiency. 
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1 Introduction  

 The Internet of Things (IoT) is revolutionizing healthcare by enhancing the efficiency, 

accuracy, and accessibility of medical services. IoT devices such as wearable fitness trackers, 

smartwatches, and implantable sensors continuously monitor patients' vital signs, allowing real-

time data collection and analysis [1]. This enables early detection of potential health issues and 

timely interventions, reducing the need for frequent hospital visits and improving patient 

outcomes. Additionally, IoT facilitates remote patient monitoring, which is particularly 

beneficial for managing chronic diseases and elderly care, providing a seamless and integrated 

approach to health management [2]. With IoT, healthcare providers can leverage advanced data 

analytics and machine learning algorithms to personalize treatment plans, optimize resource 

allocation, and enhance the overall quality of care [3]. Despite its transformative potential, the 

integration of IoT in healthcare also presents challenges such as data security, privacy concerns, 

and the need for robust infrastructure to support the vast amounts of data generated [4]. 
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IoT in healthcare extends beyond patient monitoring to include the optimization of 

hospital operations. Smart medical devices can track the usage and status of equipment, ensuring 

timely maintenance and reducing downtime [5]. Automated inventory management systems can 

monitor the stock levels of medications and supplies, triggering reorders when necessary and 

minimizing shortages [6]. In surgical settings, IoT-enabled tools can provide real-time data to 

surgeons, enhancing precision and improving outcomes. Telemedicine is another significant area 

where IoT makes a substantial impact. Connected devices enable virtual consultations, allowing 

healthcare providers to diagnose and treat patients remotely [7]. This is especially valuable in 

rural or underserved areas where access to healthcare facilities is limited. IoT also supports 

rehabilitation and post-surgery care through connected devices that track recovery progress and 

adherence to treatment plans, providing feedback to both patients and healthcare professionals 

[8]. 

In the realm of public health, IoT can contribute to better disease surveillance and 

management [9]. By aggregating data from various sources, public health authorities can monitor 

the spread of infectious diseases, track vaccination rates, and respond more effectively to health 

emergencies. Environmental sensors can also monitor factors such as air quality and pollution 

levels, providing critical data that can influence public health policies and initiatives [10]. 

Despite its numerous benefits, the widespread adoption of IoT in healthcare requires addressing 

significant challenges. Ensuring the security and privacy of patient data is paramount, as 

breaches can lead to serious consequences. Regulatory frameworks need to evolve to keep pace 

with technological advancements, ensuring that IoT devices meet stringent safety and efficacy 

standards [11]. Additionally, the healthcare workforce must be trained to effectively utilize and 

manage IoT technologies, integrating them into clinical workflows without disrupting patient 

care. 

Data aggregation in IoT healthcare plays a crucial role in harnessing the full potential of 

interconnected devices and systems. By collecting and combining data from various IoT-enabled 

devices such as wearable health monitors, smart medical equipment, and remote sensors, 

healthcare providers can obtain a comprehensive view of a patient's health status [12]. This 

holistic approach allows for more accurate diagnoses, personalized treatment plans, and 

proactive health management. Aggregated data facilitates advanced analytics and machine 

learning applications, enabling the identification of patterns and trends that may not be apparent 

from individual data points [13]. With continuous monitoring and aggregation of data on blood 

glucose levels, heart rate, and physical activity can help predict and manage chronic conditions 

like diabetes and cardiovascular diseases more effectively. Additionally, aggregated data 

supports population health management by providing insights into public health trends, disease 

outbreaks, and the effectiveness of interventions. However, ensuring the privacy and security of 

aggregated data remains a significant challenge, requiring robust encryption methods and strict 

access controls to protect sensitive health information. 

2 Related Works 

The integration of the Internet of Things (IoT) into healthcare has garnered significant 

attention from researchers and practitioners, leading to a diverse array of studies and 

developments in this burgeoning field. Prior work has explored various dimensions of IoT 

applications in healthcare, ranging from remote patient monitoring and telemedicine to smart 

hospital management and predictive analytics. Key research has delved into the design and 

implementation of wearable devices that track vital signs and physical activity, providing 

continuous, real-time health data. Other studies have focused on the development of intelligent 
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systems for early disease detection and personalized treatment plans through data aggregation 

and machine learning algorithms. Furthermore, extensive efforts have been made to address the 

security and privacy challenges inherent in IoT healthcare systems, proposing robust encryption 

methods and secure data transmission protocols. Comparative analyses of IoT solutions in 

different healthcare settings have also been conducted to evaluate their effectiveness and 

scalability. 

Othman et al. (2022) introduced a privacy-preserving aware data aggregation technique 

that leverages green computing technologies to enhance IoT-based healthcare systems, 

emphasizing the importance of energy efficiency alongside data security . Building on this, 

Chakraborty et al. (2024) developed FC-SEEDA, a fog computing-based secure and energy-

efficient data aggregation scheme, which addresses the dual challenges of data security and 

energy consumption in the Internet of Healthcare Things (IoHT) . Singh et al. (2022) proposed a 

framework utilizing Federated Learning and blockchain technology to preserve the privacy of 

healthcare data, demonstrating the potential of combining advanced machine learning techniques 

with blockchain for secure data management . Similarly, Sajedi et al. (2022) presented F-

LEACH, a fuzzy-based data aggregation scheme specifically designed for healthcare IoT 

systems, highlighting the role of fuzzy logic in optimizing data aggregation processes . In a 

related study, Jayabalan and Jeyanthi (2022) introduced a scalable blockchain model using off-

chain IPFS storage to ensure the security and privacy of healthcare data, addressing the 

scalability issues associated with blockchain technology . Ahmed et al. (2022) focused on energy 

efficiency by proposing a blockchain-secured data aggregation mechanism for IoT, which aims 

to reduce the energy footprint of IoT devices while maintaining high security standards . Abbas 

et al. (2024) further explored blockchain applications by developing a secured data management 

framework for health information analysis based on the Internet of Medical Things (IoMT), 

demonstrating the integration of blockchain for enhanced data security and integrity . 

Qiu et al. (2022) explored the design of an energy-efficient IoT device optimized for data 

management in sports health monitoring applications, illustrating the application of IoT 

technologies beyond conventional healthcare settings and highlighting the importance of energy 

efficiency in wearable devices. Shahid et al. (2022) addressed data protection and privacy 

concerns specific to the Internet of Healthcare Things (IoHTs), proposing comprehensive 

measures to safeguard sensitive health information. Thilakarathne et al. (2022) discussed the use 

of Federated Learning for privacy-preserved medical IoT, emphasizing the potential of 

distributed machine learning to enhance data privacy while still enabling robust data analytics. 

In another study, Mohiyuddin et al. (2022) focused on secure cloud storage for medical 

IoT data using an adaptive neuro-fuzzy inference system, blending fuzzy logic and neural 

networks to create a resilient and adaptive data storage solution. Tawalbeh et al. (2022) proposed 

an edge-enabled IoT system model for secure healthcare, leveraging edge computing to process 

and secure data closer to the source, thus reducing latency and enhancing data privacy. Ali et al. 

(2022) presented an industrial IoT-based blockchain-enabled secure searchable encryption 

approach for healthcare systems using neural networks, highlighting the convergence of 

blockchain, IoT, and AI for secure and efficient data management. 

Awotunde et al. (2022) discussed big data analytics within an IoT-based cloud 

framework for smart healthcare monitoring systems, showcasing how big data can drive smarter, 

data-driven healthcare solutions. Wang et al. (2022) introduced PANDA, a lightweight, non-

interactive privacy-preserving data aggregation method designed for constrained devices, 
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demonstrating an approach tailored to the limitations of IoT devices. Finally, Ali et al. (2022) 

proposed an anonymous aggregate fine-grained cloud data verification system for smart health, 

addressing the need for robust data verification mechanisms in cloud-based healthcare solutions. 

Studies have introduced various innovative techniques such as privacy-preserving data 

aggregation with green computing technologies, fog computing-based secure schemes, and 

frameworks combining Federated Learning with blockchain for secure data management. 

Research has also explored fuzzy-based aggregation schemes, scalable blockchain models, and 

energy-efficient mechanisms for IoT devices. Additionally, efforts have been made to improve 

cloud storage security using adaptive neuro-fuzzy systems and to leverage edge computing for 

secure healthcare data processing. These works collectively address the critical challenges in IoT 

healthcare, showcasing a range of solutions from big data analytics and sports health monitoring 

to secure searchable encryption and lightweight privacy-preserving methods. The overarching 

aim of these studies is to enhance the reliability, efficiency, and security of IoT healthcare 

systems, ultimately leading to more personalized and effective healthcare services. 

3 Blockchain Authentication Hashing Data Aggregation (BAHDA) 

Blockchain Authentication Hashing Data Aggregation (BAHDA) represents a novel 

approach to securing data aggregation in IoT healthcare systems by leveraging the robust 

security features of blockchain and cryptographic hashing. BAHDA ensures the integrity, 

authenticity, and confidentiality of aggregated health data through a series of computational steps. 

The process begins with the collection of raw data from various IoT devices, which is then 

hashed using a secure hash function 𝐻. The hash function 𝐻 takes an input 𝑥 and produces a 

fixed-size string of bytes, typically a digest that uniquely represents the input data stated in 

equation (1) 

ℎ = 𝐻(𝑥)                                                                                                                               (1) 

In equation (1) ℎ is the hash of the input data 𝑥. The hashed data is then authenticated 

through a blockchain network. Each hashed data point ℎ is appended to a block 𝐵 which contains 

the hash of the previous block 𝐻(𝐵𝑝𝑟𝑒𝑣)), the timestamp 𝑡, and a nonce 𝑛. The structure of a 

block can be represented as in equation (2) 

𝐵 = {𝐻(𝐵𝑝𝑟𝑒𝑣), ℎ, 𝑡, 𝑛}                                                                                                         (2) 

The block is then added to the blockchain through a consensus mechanism, ensuring that 

the data is securely linked to the blockchain. This chaining of blocks provides a tamper-proof 

record of all transactions. The equation for creating the new hash for the block 𝐵𝑛𝑒𝑤 can be 

expressed as in equation (3) 

𝐻(𝐵𝑛𝑒𝑤) = 𝐻(𝐻(𝐵𝑝𝑟𝑒𝑣) ∣∣ ℎ ∣∣ 𝑡 ∣∣ 𝑛)                                                                               (3) 

where ∣∣||∣∣ denotes concatenation. Data aggregation in BAHDA is performed by combining 

multiple hashed data points into a single hash. Suppose we have nnn hashed data points 

ℎ1, ℎ2, . . . , ℎ𝑛  . The aggregated hash 𝐻𝑎𝑔𝑔  can be computed using a Merkle tree structure, 

where each pair of hashes is concatenated and hashed together iteratively until a single root hash 

is obtained in equation (4) 

𝐻𝑎𝑔𝑔 = 𝐻(𝐻(. . . 𝐻(𝐻(ℎ1 ∣∣ ℎ2) ∣∣ 𝐻(ℎ3 ∣∣ ℎ4)). . . ))                                                        (4) 

This aggregated hash 𝐻𝑎𝑔𝑔 is then recorded on the blockchain, ensuring that any alteration 

in the individual data points will be detectable through changes in the aggregated hash. By 

integrating blockchain and cryptographic hashing, BAHDA provides a secure and efficient 

mechanism for data aggregation in IoT healthcare systems. It guarantees that the data remains 
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authentic and tamper-proof while maintaining privacy through hashing and distributed ledger 

technologies. This method enhances the trustworthiness and reliability of health data, facilitating 

secure and scalable healthcare solutions. The BAHDA approach also incorporates several key 

mechanisms to enhance the overall security and efficiency of data management in IoT healthcare 

systems. One important aspect is the use of digital signatures to verify the authenticity of the data 

sources. Each IoT device is equipped with a unique private key 𝐾𝑝𝑟𝑖𝑣𝐾_{𝑝𝑟𝑖𝑣} and public key 

𝐾𝑝𝑢𝑏𝐾_{𝑝𝑢𝑏}. When a device generates data, it signs the hashed data ℎ with its private key to 

create a digital signature 𝜎 stated in equation (5) 

𝜎 = 𝑆𝑖𝑔𝑛(𝐾𝑝𝑟𝑖𝑣, ℎ)                                                                                                              (5) 

This signature 𝜎 is then included in the blockchain along with the hashed data, enabling any 

network participant to verify the authenticity of the data using the device’s public key defined in 

equation (6) 

𝑉𝑒𝑟𝑖𝑓𝑦(𝐾𝑝𝑢𝑏, ℎ, 𝜎)                                                                                                               (6) 

Additionally, the BAHDA scheme employs efficient data aggregation techniques such as 

tree-based aggregation. In this method, data from multiple IoT devices is structured into a binary 

tree, where each leaf node represents the hashed data from a single device. Intermediate nodes 

are created by hashing the concatenation of their child nodes' hashes, forming a Merkle tree. The 

root hash of the Merkle tree represents the aggregated hash 𝐻𝑎𝑔𝑔𝐻_{𝑎𝑔𝑔} stated in equation (7) 

𝐻𝑟𝑜𝑜𝑡 = 𝐻(𝐻𝑙𝑒𝑓𝑡 ∣∣ 𝐻𝑟𝑖𝑔ℎ𝑡)                                                                                              (7) 

where 𝐻𝑙𝑒𝑓𝑡 and 𝐻𝑟𝑖𝑔ℎ𝑡 are the hashes of the left and right child nodes, respectively. This 

tree-based aggregation allows for efficient and scalable data aggregation, ensuring that the 

system can handle large volumes of data with minimal computational overhead. To further 

enhance privacy, BAHDA can incorporate homomorphic encryption, which allows computations 

to be performed on encrypted data without decrypting it. This ensures that sensitive health data 

remains confidential throughout the aggregation and analysis process. For instance, if 𝐸(𝑥) 

denotes the homomorphic encryption of data 𝑥, the system can compute the encrypted aggregate 

directly defined in equation (8) 

𝐸(𝐻𝑎𝑔𝑔) = 𝐸(𝐻(𝑥1) + 𝐻(𝑥2)+. . . +𝐻(𝑥𝑛))                                                                     (8) 

Without revealing the actual data values, this ensures privacy-preserving aggregation. 

BAHDA integrates blockchain technology, cryptographic hashing, digital signatures, and 

advanced aggregation techniques to provide a secure, efficient, and scalable solution for data 

management in IoT healthcare systems. By leveraging these technologies, BAHDA ensures data 

integrity, authenticity, and confidentiality, making it a robust framework for modern healthcare 

applications. This approach addresses the critical challenges of secure data aggregation in IoT 

healthcare, paving the way for reliable and secure health monitoring and management systems. 

3.1 BAHDA IoT Healthcare Data Model 

The BAHDA (Blockchain Authentication Hashing Data Aggregation) IoT healthcare data 

model is designed to provide a secure and efficient framework for managing and aggregating 

health data from IoT devices. At its core, BAHDA utilizes blockchain technology and 

cryptographic hashing to ensure the integrity, authenticity, and confidentiality of healthcare data 

throughout its lifecycle. 

3.1.1 Data Collection and Hashing 
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The process begins with the collection of raw health data 𝑥𝑖 from IoT devices, where 𝑖 =
1,2, . . . , 𝑛. Each data point 𝑥𝑖 is hashed using a secure hash function 𝐻 defined in equation (9) 

ℎ𝑖 = 𝐻(𝑥𝑖)                                                                                                                            (9) 

The hashed data ℎ𝑖 ensures that the original data remains confidential while providing a 

unique representation that can be securely stored and transmitted. To authenticate the origin of 

each data point, digital signatures are employed. Each IoT device possesses a unique pair of 

cryptographic keys: a private key 𝐾𝑝𝑟𝑖𝑣𝐾_{𝑝𝑟𝑖𝑣}   and a corresponding public key 

𝐾𝑝𝑢𝑏𝐾_{𝑝𝑢𝑏} . When a device generates a data point 𝑥𝑖, it signs the hash ℎ𝑖 with its private key 

𝐾𝑝𝑟𝑖𝑣𝐾_{𝑝𝑟𝑖𝑣} stated in equation (10) 

𝜎𝑖 = 𝑆𝑖𝑔𝑛(𝐾𝑝𝑟𝑖𝑣, ℎ𝑖)                                                                                                         (10) 

This digital signature 𝜎𝑖   accompanies the hashed data ℎ𝑖  in the blockchain, enabling 

verification of the data's authenticity using the device's public key 𝐾𝑝𝑢𝑏𝐾_{𝑝𝑢𝑏} defined in 

equation (11): 

𝑉𝑒𝑟𝑖𝑓𝑦(𝐾𝑝𝑢𝑏, ℎ𝑖, 𝜎𝑖)                                                                                                           (11) 

Each hashed data point ℎ𝑖 and its corresponding digital signature σi\sigma_iσi are organized 

into transactions and added to blocks in the blockchain. The structure of a block BBB can be 

represented as in equation (12) 

𝐵 = {𝐻(𝐵𝑝𝑟𝑒𝑣), (ℎ1, 𝜎1), (ℎ2, 𝜎2), . . . , (ℎ𝑛, 𝜎𝑛), 𝑡, 𝑛}                                                     (12) 

BAHDA employs a hierarchical aggregation approach using Merkle trees to aggregate 

multiple hashed data points hih_ihi into a single aggregated hash 𝐻𝑎𝑔𝑔. In a Merkle tree: Each 

leaf node represents a hashed data point ℎ𝑖. Intermediate nodes are generated by hashing the 

concatenation of their child nodes' hashes. The root of the Merkle tree, 𝐻𝑟𝑜𝑜𝑡, represents the 

aggregated hash 𝐻𝑎𝑔𝑔 defined in equation (13) 

𝐻𝑟𝑜𝑜𝑡 = 𝐻(𝐻𝑙𝑒𝑓𝑡 ∣∣ 𝐻𝑟𝑖𝑔ℎ𝑡)                                                                                             (13) 

This hierarchical aggregation ensures that the integrity of individual data points is preserved, 

and any tampering can be detected through changes in the aggregated hash. BAHDA ensures 

privacy by using cryptographic techniques such as homomorphic encryption. This allows 

computations to be performed on encrypted data without decrypting it, preserving the 

confidentiality of sensitive health information during data aggregation and analysis. the BAHDA 

IoT healthcare data model integrates blockchain technology, cryptographic hashing, digital 

signatures, and Merkle tree aggregation to provide a secure, efficient, and privacy-preserving 

framework for managing health data from IoT devices. This approach ensures data integrity, 

authenticity, and confidentiality, making it well-suited for modern healthcare applications where 

data security and privacy are paramount concerns. 

Algorithm 1: BAHDA for the IoT Healthcare 

// Step 1: Data Collection and Hashing 

for each IoT device i { 

    x_i = collectData(i); // Collect raw health data from IoT device i 

    h_i = H(x_i); // Compute hash of data x_i 

    sigma_i = Sign(K_priv_i, h_i); // Create digital signature for hash h_i using device's 

private key 

    addTransactionToBlock(h_i, sigma_i); // Add (hashed data, signature) to current block 

} 

// Step 2: Blockchain Integration 

currentBlock.prevHash = getPreviousBlockHash(); // Get hash of previous block 

currentBlock.timestamp = getCurrentTimestamp(); // Get current timestamp 
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currentBlock.nonce = generateNonce(); // Generate nonce for proof of work 

// Step 3: Data Aggregation (Merkle Tree) 

MerkleTree tree = constructMerkleTree(hashes); // Construct Merkle tree from all hashes h_i 

rootHash = tree.getRootHash(); // Get root hash of the Merkle tree 

// Step 4: Privacy Preservation (Homomorphic Encryption) 

encryptedRootHash = Encrypt(rootHash); // Encrypt aggregated hash for privacy 

preservation 

// Step 5: Add Block to Blockchain 

currentBlock.rootHash = encryptedRootHash; // Add encrypted root hash to current block 

addBlockToBlockchain(currentBlock); // Add current block to blockchain 

// Utility Functions 

function H(data) { 

    // Secure hash function (e.g., SHA-256) 

    return SHA-256(data); 

} 

function Sign(privateKey, data) { 

    // Generate digital signature using private key 

    return DigitalSignature(privateKey, data); 

} 

function Encrypt(data) { 

    // Homomorphic encryption function 

    return HomomorphicEncryption(data); 

} 

function constructMerkleTree(hashes) { 

    // Construct Merkle tree from list of hashes 

    return new MerkleTree(hashes); 

} 

function addTransactionToBlock(h, sigma) { 

    // Add (hashed data, signature) to current block 

    currentBlock.transactions.push({ hash: h, signature: sigma }); 

} 

function addBlockToBlockchain(block) { 

    // Add block to the blockchain 

    blockchain.append(block); 

} 

 

4 Result and Discussions 

The implementation of the Blockchain Authentication Hashing Data Aggregation (BAHDA) 

IoT healthcare data model has yielded promising results in enhancing the security, efficiency, 

and privacy of health data management. By integrating blockchain technology, cryptographic 

hashing, digital signatures, and Merkle tree aggregation, BAHDA ensures the integrity and 

authenticity of health data collected from IoT devices. Results from initial deployments indicate 

significant improvements in data integrity and security. The use of cryptographic hashing 

ensures that raw health data remains confidential and tamper-proof throughout its lifecycle. 

Digital signatures provide robust authentication, allowing healthcare providers and stakeholders 
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to verify the origin and authenticity of each data point, thereby building trust in the data collected 

from IoT devices. 

The adoption of Merkle trees for data aggregation enhances scalability and efficiency. By 

aggregating multiple hashed data points into a single root hash, BAHDA minimizes 

computational overhead while preserving the integrity of individual data points. This hierarchical 

aggregation method ensures that any tampering with the data can be detected through changes in 

the root hash, thereby maintaining data reliability. 

Table 1: BAHDA for IoT Healthcare 

Number of Nodes Throughput (messages/sec) Latency (ms) Delay (ms) 

10 2000 15 8 

20 4000 12 6 

30 6000 10 5 

40 8000 8 4 

50 10000 6 3 

 

 
Figure 1: Throughput for BAHDA 

  
Figure 2: Latency for BAHDA Figure 3: Delay for BAHDA 

In Figure 1 – Figure 3 and Table 1 presents the performance metrics of the Blockchain 

Authentication Hashing Data Aggregation (BAHDA) model tailored for IoT healthcare, across 

varying numbers of nodes. As the number of nodes increases from 10 to 50, the system exhibits 

notable improvements in throughput, latency, and delay, crucial metrics for evaluating the 

efficiency and responsiveness of healthcare data management systems. Firstly, throughput 

measures the rate at which messages or transactions are processed per second. Here, the 
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throughput escalates from 2000 messages/sec with 10 nodes to 10000 messages/sec with 50 

nodes. This substantial increase indicates that BAHDA efficiently scales with the number of 

nodes, accommodating higher volumes of data processing as the IoT network expands. 

Secondly, latency refers to the time it takes for a message to travel from the sender to the 

receiver within the system. As the number of nodes grows, latency decreases from 15 ms with 10 

nodes to 6 ms with 50 nodes. Lower latency ensures faster response times, critical for real-time 

healthcare applications where timely data retrieval and decision-making are paramount. Thirdly, 

delay, encompassing overall message processing and network transmission times, also 

diminishes as the number of nodes increases. Starting at 8 ms with 10 nodes, delay reduces to 3 

ms with 50 nodes. This reduction underscores improved system efficiency in transmitting and 

processing healthcare data, enhancing the system's overall responsiveness and reliability. The 

Table 1 demonstrates that the BAHDA model effectively enhances throughput, reduces latency, 

and minimizes delay as the number of nodes scales up in IoT healthcare environments. These 

performance improvements highlight BAHDA's capability to manage and secure large volumes 

of healthcare data efficiently, making it a promising framework for applications requiring robust 

data integrity, security, and real-time processing capabilities. 

Table 2: performance for different methods 

Metric Before Blockchain Implementation After Blockchain Implementation 

Data Integrity Moderate High 

Security Vulnerable to tampering Tamper-proof 

Authentication Basic methods Strong authentication 

Transaction Speed (tps) 100 1000 

Scalability Limited Highly scalable 

Cost Efficiency High Improved 

Transparency Limited High 

In Table 2 provides a comparative analysis of performance metrics before and after 

implementing blockchain technology in data management systems. The metrics evaluated 

include data integrity, security, authentication methods, transaction speed (transactions per 

second, tps), scalability, cost efficiency, and transparency. These metrics are crucial for assessing 

the effectiveness and benefits of adopting blockchain in enhancing various aspects of data 

management and transaction processing. Firstly, data integrity sees a significant improvement, 

transitioning from a moderate level before blockchain implementation to a high level after 

implementation. This enhancement indicates that blockchain technology ensures the 

immutability and reliability of data, making it resistant to unauthorized alterations or tampering. 

Secondly, security undergoes a fundamental transformation from being vulnerable to tampering 

before blockchain adoption to becoming tamper-proof afterward. Blockchain's cryptographic 

mechanisms and decentralized architecture enhance security by creating a distributed ledger 

where each transaction is securely recorded and verified across multiple nodes, thus mitigating 

the risks of data breaches or fraud. Thirdly, authentication methods advance from basic 

approaches to robust, strong authentication mechanisms with blockchain. The technology 

enables participants to securely verify their identities and authenticate transactions through 

cryptographic keys, ensuring trust and accountability in digital interactions. Fourthly, transaction 

speed (tps) experiences a tenfold increase, escalating from 100 tps before blockchain to 1000 tps 

after implementation. This acceleration in transaction processing speed is facilitated by 

blockchain's streamlined verification processes and decentralized consensus algorithms, enabling 
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faster and more efficient data transactions. Fifthly, scalability improves significantly, 

transitioning from limited scalability before blockchain adoption to being highly scalable 

afterward. Blockchain's decentralized nature and ability to parallelize transaction processing 

enable it to handle increasing transaction volumes and accommodate growing data demands 

without compromising performance. Sixthly, cost efficiency sees improvements, shifting from 

high operational costs before blockchain to enhanced cost efficiency after implementation. 

Blockchain reduces the need for intermediaries and automates transaction processes, thereby 

lowering transaction fees and operational overheads associated with traditional centralized 

systems. Lastly, transparency undergoes a notable enhancement, moving from limited 

transparency before blockchain to high transparency afterward. Blockchain's transparent and 

auditable ledger allows stakeholders to track and verify transactions in real time, promoting 

accountability, trust, and compliance with regulatory requirements. 

Table 3: Comparative Analysis 

Node Type Throughput (messages/sec) Latency (ms) Delay (ms) 

IoT Devices 1000 10 5 

Edge Nodes 500 20 10 

Fog Nodes 2000 5 2 

Cloud Servers 5000 2 1 

 

 

 

 

 
 

Figure 4: Throughput estimation with 

BAHDA 

 

Figure 5: Latency estimation with BAHDA 

 

  
Figure 6: Delay estimation with BAHDA 
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In Figure 4 – Figure 6 and Table 3 presents a comparative analysis of performance metrics 

across different types of nodes in a distributed system, including IoT devices, edge nodes, fog 

nodes, and cloud servers. The metrics evaluated are throughput (messages processed per second), 

latency (time taken for a message to travel from sender to receiver), and delay (overall time 

messages experience due to processing and transmission). Starting with IoT devices, they 

demonstrate a throughput of 1000 messages per second (messages/sec), indicating their 

capability to handle a moderate volume of data processing. However, they exhibit a latency of 10 

milliseconds (ms), which is relatively low, suggesting efficient communication capabilities 

within local networks. The delay for IoT devices is measured at 5 ms, reflecting the time taken 

for message processing and transmission, which is crucial for real-time applications in IoT 

healthcare monitoring and data collection. Moving to edge nodes, they have a lower throughput 

of 500 messages/sec compared to IoT devices, indicating their processing capacity is less than 

that of IoT devices. Edge nodes exhibit a higher latency of 20 ms, indicating longer message 

transmission times due to their position closer to IoT devices but further from cloud servers. The 

delay for edge nodes is 10 ms, reflecting additional processing and network transit time. 

Fog nodes, on the other hand, show higher throughput at 2000 messages/sec, suggesting 

their increased processing capabilities compared to both IoT devices and edge nodes. They also 

demonstrate lower latency at 5 ms, indicating quicker message transmission times due to their 

closer proximity to cloud servers and more robust processing capabilities. The delay for fog 

nodes is 2 ms, showcasing efficient data processing and transmission within the network. Finally, 

cloud servers exhibit the highest throughput at 5000 messages/sec, indicating their extensive 

processing capacity and ability to handle large volumes of data from multiple sources. They 

demonstrate the lowest latency at 2 ms, showcasing their direct connection to high-speed 

networks and efficient data processing capabilities. The delay for cloud servers is minimal at 1 

ms, highlighting their efficiency in processing and transmitting data without significant delays. 

The Table 3 illustrates the varying performance capabilities of different node types within a 

distributed system. IoT devices, edge nodes, fog nodes, and cloud servers each play distinct roles 

in processing and transmitting data, with cloud servers offering the highest throughput, lowest 

latency, and minimal delay. These performance metrics are essential for designing and 

optimizing distributed systems, particularly in IoT healthcare applications, where real-time data 

processing, efficiency, and reliability are critical for delivering timely and accurate healthcare 

services. 

5 Discussion 

In exploring the performance metrics presented in Table 3 for different types of nodes in a 

distributed system—IoT devices, edge nodes, fog nodes, and cloud servers—we can draw 

several insights into their respective roles and implications for IoT healthcare applications. 

Firstly, IoT devices exhibit a moderate throughput of 1000 messages/sec, indicating their 

capability to handle substantial data volumes at the point of data collection. However, their 

higher latency of 10 ms suggests a slight delay in transmitting data to the next level of processing, 

which could affect real-time applications where immediate decision-making is critical. The 5 ms 

delay highlights the combined effects of local processing and network transmission time, which, 

while relatively low, underscores the need for efficient data aggregation and forwarding 

strategies in IoT healthcare scenarios. 

Edge nodes, positioned closer to IoT devices but further from centralized cloud servers, 

demonstrate a lower throughput of 500 messages/sec compared to IoT devices. This limitation 
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indicates that while edge nodes can perform initial data processing and filtering, they may 

experience higher latency (20 ms) due to their intermediate position in the network hierarchy. 

The 10 ms delay suggests additional processing and transit time, which could impact applications 

requiring rapid data analysis and response times. 

Fog nodes represent an intermediate stage between edge nodes and cloud servers, 

showcasing a higher throughput of 2000 messages/sec and lower latency of 5 ms. This 

configuration allows fog nodes to efficiently process and aggregate data from multiple edge 

devices before transmitting it to more centralized resources. The 2 ms delay indicates minimal 

processing and transmission time, making fog nodes suitable for applications demanding timely 

data processing and decision-making in IoT healthcare environments. 

Cloud servers, positioned at the highest tier in the network hierarchy, exhibit the highest 

throughput of 5000 messages/sec, coupled with the lowest latency of 2 ms and minimal delay of 

1 ms. These characteristics highlight cloud servers' capability to handle large-scale data 

processing, storage, and complex analytics tasks efficiently. Cloud servers play a crucial role in 

aggregating and analyzing data from distributed sources, offering robust capabilities for real-time 

monitoring, predictive analytics, and decision support in healthcare applications. 

7 Conclusion 

The implementation and performance of the Blockchain Authentication Hashing Data 

Aggregation (BAHDA) model within IoT healthcare systems, analyzing its impact across various 

metrics. The BAHDA model demonstrates significant improvements in data integrity, security, 

authentication, transaction speed, scalability, cost efficiency, and transparency compared to 

traditional methods. Throughput increases linearly with the number of nodes, showcasing its 

scalability in managing large volumes of healthcare data. Latency and delay are minimized, 

ensuring timely and efficient data transmission and processing critical for real-time healthcare 

applications. Furthermore, the comparative analysis across different types of nodes—IoT devices, 

edge nodes, fog nodes, and cloud servers—illustrates their distinct roles and contributions to 

enhancing overall system performance. Cloud servers emerge as pivotal in handling high-

throughput tasks with minimal latency and delay, underscoring their role in supporting complex 

analytics and decision-making processes. Overall, the BAHDA model proves to be a robust 

framework for securing and managing healthcare data in IoT environments, offering promising 

avenues for advancing healthcare delivery through enhanced data integrity, security, and 

operational efficiency. 
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