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Abstract: The bus transportation system, modeled using the AnyLogic simulation software, aims to 

optimize the flow of buses and manage key operational challenges such as bus bunching and delays. The 

simulation incorporates various elements, including bus agents, bus stops, and passenger behaviors, with 

a focus on how buses interact with each other and with passengers at different stops. The system is 

designed to simulate real-world bus routes, taking into account factors like bus speed, intervals, dwell 

times, and passenger load. By adjusting bus schedules and frequencies, the simulation tests different 

scenarios to identify strategies that minimize wait times, reduce delays, and improve service efficiency. 

This paper explores the optimization of bus transportation systems in the Dallas-Fort Worth area, 

focusing on addressing the challenge of bus bunching and improving overall service efficiency. Using the 

AnyLogic simulation tool, the study models the dynamics of bus operations, including factors such as bus 

intervals, dwell times, and passenger load variations during rush and normal hours. By adjusting bus 

schedules and service frequencies, the paper evaluates multiple optimization scenarios to identify 

strategies that reduce passenger wait times, minimize delays, and enhance system efficiency. The results 

demonstrate that strategically reducing bus intervals during peak hours and extending them during non-

peak hours can significantly improve operational performance, with service efficiency increasing from 75% 

to 88% under optimal conditions. The findings highlight the importance of tailoring bus schedules to 

passenger demand and time-of-day factors to mitigate issues like bus bunching and ensure more reliable 

public transportation services. 

Keywords: Busbunching, publich transport, agent- based modeling, any logic simulation, intervention 

strategies 

1 Introduction 

 In recent years, transportation in China has undergone significant transformation, driven by 

rapid urbanization, technological advancements, and government investment in infrastructure. 

China's high-speed rail network is the largest in the world, with over 40,000 kilometers of track 

as of 2024. This expansion has revolutionized domestic travel, enabling fast, convenient, and 

affordable connections between major cities and regions [1]. Trains can reach speeds of up to 

350 km/h (217 mph), drastically reducing travel times and enhancing economic integration 

between cities.China is a global leader in electric vehicle (EV) adoption. The country is pushing 

for a green transportation future with strong government incentives, subsidies, and infrastructure 

investment, such as an expanding network of EV charging stations. Chinese companies like 

BYD and NIO are becoming major players in the global EV market [2]. The government's goal 

is for new energy vehicles (NEVs) to account for 40% of all car sales by 2030. Ride-sharing 

platforms like Didi Chuxing have transformed urban mobility in China. These services offer an 

affordable and convenient alternative to traditional taxis, using mobile apps to connect drivers 

and passengers [3]. Additionally, bike-sharing and e-scooter rentals have become widespread, 

especially in major cities like Beijing, Shanghai, and Shenzhen, contributing to last-mile 
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connectivity [4]. China has embraced smart transportation technologies that integrate AI, big 

data, and IoT (Internet of Things) to improve traffic management, optimize public transportation, 

and reduce congestion. For example, Beijing and other large cities use AI-powered traffic lights 

that adjust in real time based on traffic flow [5]. Smart buses and subway systems with 

contactless payment options are also becoming more common. China's metro systems have 

expanded rapidly, with cities like Shanghai, Beijing, and Guangzhou having extensive 

underground and elevated rail lines [6 – 9] These networks are crucial for managing urban 

mobility, particularly in densely populated cities. Investments in metro systems continue to grow, 

and new cities are developing their own systems to meet the rising demand for efficient public 

transportation [10]. China has been investing heavily in the aviation sector, with new airports, 

the development of green aircraft, and efforts to reduce the environmental impact of air travel. 

Airports like Beijing Daxing International, which opened in 2019, are designed to accommodate 

a growing number of passengers while promoting sustainable operations [11]. Furthermore, 

China is exploring the use of electric and hybrid planes as part of its long-term strategy to reduce 

carbon emissions in aviation. 

A bus transportation system can be effectively modeled and analyzed using logic 

simulation, which helps simulate the various processes involved in the operation of the system 

[12]. In this simulation, the system can be broken down into components like bus arrivals, route 

assignments, bus schedules, and passenger boarding. Logical components, such as gates and flip-

flops, can represent the different decision-making processes [13 -15]. For instance, a 

combination of logic gates could be used to model the control systems for bus dispatch based on 

factors like traffic conditions, number of passengers, and time of day. The logic could also 

incorporate feedback mechanisms to adjust the frequency of bus arrivals based on demand. For 

example, if a bus is nearing full capacity, the system could trigger a signal to dispatch the next 

bus or reroute existing ones to reduce overcrowding [16]. Flip-flops can model the state of each 

bus, such as whether it is currently operating, idle, or delayed. This simulation could also include 

mechanisms for controlling priority buses or adjusting routes dynamically based on real-time 

data, such as road closures or delays. Using logic simulation for such a system offers valuable 

insights into performance, optimization, and overall management of a bus network in a complex 

urban environment [17]. 

The contribution of this paper lies in its development of a simulation-based framework 

for optimizing bus transportation systems using AnyLogic, addressing key issues like bus 

bunching, delays, and inefficiencies. By modeling various operational factors such as bus 

intervals, dwell times, and passenger loads, the paper provides a comprehensive analysis of how 

different scheduling strategies can improve system performance. The study’s primary 

contribution is its ability to test and evaluate multiple optimization scenarios without the need for 

real-world trials, offering insights into how adjusting bus frequencies and schedules can reduce 

passenger wait times, enhance service reliability, and increase overall system efficiency. The 

results of this research provide practical recommendations for transit authorities, helping them 

implement data-driven strategies to improve public transportation services, particularly in urban 

areas with high passenger demand. 
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2 System Model 

In this paper focus on optimizing bus bunching in the Dallas-Fort Worth bus 

transportation system, using the AnyLogic simulation tool. The primary objective is to 

understand and address the problem of buses running too close together, leading to delays and 

inefficiencies. Our model examines the interaction between buses and bus stops, with an 

emphasis on the time intervals between buses while excluding external traffic disruptions. The 

simulation operates on a fixed bus route with designated stops, allowing for precise measurement 

of travel times and bus intervals. We incorporate time-of-day variations, such as longer stop 

times during rush hours and shorter stops during off-peak times, reflecting real-world patterns. 

For simplicity, the model assumes uniform passenger arrival and waiting times, meaning 

passengers arrive and wait for buses at a constant rate across all stops. Additionally, we do not 

factor in bus capacity constraints, allowing for the analysis of bus scheduling and timing without 

considering how many passengers a bus can carry. The simulation also ignores unpredictable 

delays like traffic conditions, focusing purely on how the scheduled operations and passenger 

behaviors contribute to bus bunching. Finally, the model assumes that buses do not overtake each 

other, ensuring that the buses maintain their assigned order along the route. This controlled 

environment helps to isolate the key factors that contribute to bus bunching, providing insights 

that can inform better scheduling strategies in real-world bus systems shown in Figure 1 

 

Figure 1: State Optimization 

Initially, assume that buses are scheduled to arrive at regular intervals 𝑇𝑠(e.g., every 15 

minutes). This interval is the planned time between buses. 

𝑇𝑠 =Scheduled time between buses 

This is the ideal situation, where buses are perfectly spaced with no delays.  In reality, 

however, buses might arrive at varying times due to delays, differences in stop times, and 

passenger boarding behavior. We define the actual time between two buses as 𝑇𝑎𝑐𝑡𝑢𝑎𝑙, which 

may differ from the scheduled time 𝑇𝑠 as in equation (1) 

𝑇𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑇𝑠 + 𝛥𝑇                                                                                                               (1) 

 In equation (1) 𝛥𝑇 is the difference between the scheduled time and the actual 

arrival time of the next bus. 𝛥𝑇 can be positive (bus is delayed) or negative (bus is early). Bus 
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bunching occurs when buses arrive too close to each other, leading to delays. To prevent this, we 

need to ensure that the time between buses doesn’t decrease too much. If the first bus is delayed 

and the second bus arrives on time, the interval between the buses becomes smaller. As a result, 

𝛥𝑇 can accumulate over multiple cycles, leading to buses bunching together. 

For example: 

• If Bus 1 is delayed by 5 minutes (ΔT=5), the next bus might arrive on time, creating an 

interval of 10 minutes instead of the scheduled 15 minutes. 

• If this happens repeatedly, buses could end up arriving almost simultaneously. 

Let’s assume passengers arrive at the bus stop according to a Poisson process (random 

arrival). This means that passengers arrive at an average rate 𝜆, where 𝜆 = 1/𝑇𝑎𝑣𝑔 is the average 

time between passenger arrivals. For simplicity, the number of passengers arriving at a bus stop 

within a time interval 𝑡 follows the Poisson distribution represented in equation (2) 

𝑃(𝑘, 𝑡) =
(𝜆𝑡)𝑘𝑒−𝜆𝑡

𝑘!
                                                                                                              (2) 

 In above equation (2) 𝑃(𝑘, 𝑡) is the probability of 𝑘 passengers arriving in time 𝑡; 

𝜆 is the passenger arrival rate. The time buses spend at each stop can vary depending on the time 

of day. During rush hours, buses may spend more time at stops due to higher passenger volumes. 

So, we define the stop time as in equation (3) 

𝑇𝑠𝑡𝑜𝑝(𝑡) =  {
𝑇𝑟𝑢𝑠ℎ         𝑖𝑓 𝑖𝑡’𝑠 𝑟𝑢𝑠ℎ ℎ𝑜𝑢𝑟

𝑇𝑛𝑜𝑛−𝑟𝑢𝑠ℎ                𝑖𝑓 𝑖𝑡′𝑠 𝑛𝑜𝑛 − 𝑟𝑢𝑠ℎ ℎ𝑜𝑢𝑟
                                               (3) 

𝑇𝑟𝑢𝑠ℎ  is the stop time during rush hour (longer due to more passengers); 𝑇𝑛𝑜𝑛−𝑟𝑢𝑠ℎ is the 

stop time during non-rush hours (shorter). To reduce bus bunching, we can adjust the scheduled 

interval between buses based on the stop times. The idea is that during rush hours, buses should 

be spaced a bit further apart to account for the extra time spent at stops represented in equation (4) 

𝑇𝑛𝑒𝑤(𝑡) =  𝑇𝑠 + 𝛼𝑇𝑠𝑡𝑜𝑝(𝑡)                                                                                                 (4) 

In equation (4) 𝛼 is a scaling factor that adjusts the interval, During rush hours, 𝑇𝑛𝑒𝑤 will 

be larger, and during non-rush hours, it will be closer to the scheduled interval 𝑇𝑠. The goal is to 

prevent 𝑇𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 from becoming too small. If the time between buses gets too small, the buses 

will bunch together and cause delays. So, the key is to ensure that the buses are spaced properly 

according to demand (based on passenger arrivals and stop times). If the system detects that 

buses are arriving too close together, we can adjust the next bus’s scheduled time 𝑇𝑠  by 

increasing the interval to avoid bunching. The scheduled interval between buses is 𝑇𝑠. Actual 

time between buses is 𝑇𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑇𝑠 + 𝛥𝑇. We adjust bus stop times during rush hours 𝑇𝑟𝑢𝑠ℎand 

non-rush hours 𝑇𝑛𝑜𝑛−𝑟𝑢𝑠ℎ. The goal is to modify the bus schedule dynamically 𝑇𝑛𝑒𝑤to avoid bus 

bunching by adjusting the time interval. 

3 Dallas-Fort Worth Bus Transportation  

The model design for the Dallas-Fort Worth (DFW) bus transit system is structured to 

simulate bus operations through a set of defined agents, each with specific attributes and 

behaviors. The main agents in the system are Buses and Bus Stops. The model design for the 

Dallas-Fort Worth (DFW) bus transit system simulates bus operations through defined agents 

with specific attributes and behaviors. There are two primary agent classes: Buses and Bus Stops. 
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The Buses are mobile agents traveling along a predefined loop, starting and ending at Arlington, 

with stops at four main locations. Each bus has attributes such as speed (set at 30 MPH for travel 

time calculation), arrival time at each stop, and wait/delay time, which varies depending on 

passenger interactions. The Bus Stops are static agents that represent service points in the transit 

network, defined spatially using GIS data, and they influence the dwell time of buses based on 

passenger volume. The bus agents follow a cyclical route, adjusting their behavior depending on 

passenger demand and time of day, with increased dwell times during rush hours and shorter 

stops during non-peak times. Bus stops, acting as catalysts for these delays, modulate the wait 

times based on the flow of passengers boarding or alighting. A key feature of the system is that 

buses cannot overtake each other, and their sequence is influenced by the cumulative effects of 

interactions at each stop. These behaviors are modeled using an AnyLogic statechart, which 

outlines the bus's actions and transitions from one state to another, such as moving from one stop 

to the next, or adjusting for peak demand. The model includes several states, such as start (the 

bus begins its loop), loading (passenger boarding), and stops along the route where the bus 

interacts with passengers. Time spent at stops varies with factors like passenger load, and the 

system simulates different travel conditions, including normal and rush-hour states, based on the 

time of day and passenger demand. Transition triggers within the statechart determine the bus's 

behavior, such as the timing of bus arrivals, travel times between stops, and adjustments for peak 

or off-peak hours as illustrated in Figure 2. 

 

Figure 2: Normal Hours iNterection in Any Logic 

In terms of interactions, the buses follow a scheduled route, moving from stop to stop 

with timeout mechanisms that ensure timely transitions. The system also introduces uniform 

distributions to account for the variability in passenger arrivals and wait times, with rush-hour 

conditions leading to increased dwell times and potential bus bunching. The simulation collects 

data over a 24-hour period, capturing both normal and rush-hour operations. Data management 

tools like Excel files and ArrayList collections are used to track performance metrics such as 

wait times and bus travel statistics. The model runs for several months of data, excluding 

weekends and public holidays to ensure a consistent analysis of typical weekday operations. The 

model design for the Dallas-Fort Worth (DFW) bus transit system incorporates various equations 

and concepts that simulate the real-world dynamics of bus operations. Here, we expand on the 

different elements, explaining them with appropriate equations and models. 
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Agent Classes and Their Attributes: 

1. Buses: 

o Speed (v): The bus speed is initialized to 30 miles per hour (MPH) for calculating 

travel time between stops. The speed is constant unless adjusted during the 

simulation due to traffic conditions or bus bunching. 𝑣 = 30 𝑀𝑃𝐻 

o Arrival Time (T): This is the time when the bus arrives at each bus stop. It is 

determined based on the initial scheduled time and any delays caused by stop 

interactions (boarding, alighting) using equation (5) 

𝑇𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 + 𝛥𝑇                                                                                                   (5) 

 

 Where ΔTis the delay accumulated due to passenger interactions at previous stops. 

o Wait/Delay Time (T_{wait}): The time a bus remains at each bus stop is 

influenced by the number of passengers boarding or alighting. This is modeled 

using a queueing system, where the number of passengers and their boarding rates 

affect the wait time denoted in equation (6) 

𝑇𝑤𝑎𝑖𝑡 = 𝑅𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔𝑁𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 + 𝑅𝑎𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑁𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠                                 (6) 

In equation (6) 𝑁𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠  is the number of passengers boarding or alighting, 

𝑅𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔 is the boarding rate, and 𝑅𝑎𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 is the alighting rate. 

2. Bus Stops: 

o Location (x, y): Each bus stop is defined in a spatial coordinate system using 

geographic information system (GIS) data. The spatial position of bus stops can 

be represented by their coordinates.  

o Bus Interaction: At each bus stop, the dwell time is modified by the number of 

passengers. If the stop is busy, the dwell time increases, and vice versa. The 

interaction at each bus stop can be modeled by the following equation (7) 

𝑇𝑑𝑤𝑒𝑙𝑙 = 𝑓(𝑁𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠, 𝑇𝑡𝑖𝑚𝑒)                                                                                  (7) 

In equation (7) 𝑁𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 is the number of passengers at the stop, and 𝑇𝑡𝑖𝑚𝑒 is the 

time of day (rush hour or non-rush hour). 

Behaviors and Rules: 

1. Buses Behavior: Buses follow a designated route in a loop. The behavior at each stop is 

governed by the rules of interaction, especially during rush hours when more passengers 

affect the wait times. The rule for adjusting speed and dwell time can be modeled by a 

function that incorporates peak and off-peak hours stated in equation (8) 

𝑇𝑛𝑒𝑤 = 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 + 𝛼𝑇𝑠𝑡𝑜𝑝(𝑡)                                                                                  (8) 

𝑇𝑛𝑒𝑤 is the adjusted time interval, and α\alphaα is a factor that increases the interval 

during rush hours, reflecting longer dwell times. During rush hours, 𝑇𝑠𝑡𝑜𝑝(𝑡) increases, while 

during off-peak times, it decreases. 

2. Bus Stops and Passenger Interaction: 
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o The dwell time 𝑇𝑑𝑤𝑒𝑙𝑙 at a stop is influenced by the volume of passengers. Using 

a Poisson process to model passenger arrivals, the number of passengers arriving 

during a time period 𝑡 follows the Poisson distribution: 𝑃(𝑘, 𝑡) The boarding and 

alighting rates can also follow a normal distribution based on historical data to 

simulate variability in passenger behavior defined in equation (9) 

𝑅𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔 ∼ 𝑁(𝜇, 𝜎)                                                                                                       (9) 

Where 𝜇  is the average boarding rate and 𝜎  is the standard deviation, indicating the 

variability in passenger boarding time. 

State Chart and Transitions: 

The state chart of the simulation dictates the behavior of the bus agents. The transitions 

between states are based on time and passenger dynamics, represented by trigger functions and 

decision nodes. The transitions are defined as follows: 

1. start to loading1: The transition from the start state to loading involves generating a bus 

at a fixed rate, typically 2 buses per hour. The triggering rate 𝑟 for bus generation is 

defined in equation (10) 

𝑟 = 2𝑏𝑢𝑠𝑒𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟                                                                                                     (10) 

2. loading1 to stop1: Once the bus has finished loading passengers, it moves to the first stop. 

The transition time is governed by a uniform distribution stated in equation (11) 

𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ∼ 𝑈(𝑎, 𝑏)                                                                                                    (11) 

Where 𝑈(𝑎, 𝑏) is the uniform distribution, representing the time taken for the bus to 

travel between stops, with 𝑎 and 𝑏 being the minimum and maximum transition times. 

3. stop1 to pick: The bus transitions from one stop to another. The next state is determined 

by the agent's arrival at the stop, triggering actions such as loading passengers. 

4. pick to normal/rush: The bus enters the normal or rush state depending on the time of day 

and passenger demand. If the bus is in rush hour, the dwell time increases, and the travel 

time is adjusted accordingly stated in equation (12) 

𝑇𝑑𝑤𝑒𝑙𝑙 = 𝑇𝑑𝑤𝑒𝑙𝑙 + 𝛼 × 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝐿𝑜𝑎𝑑                                                                    (12) 

Interaction Dynamics and Timing: 

1. Timeout Mechanisms: To ensure buses move from stop to stop, timeouts are used, which 

trigger the bus to leave each stop after a specified wait time. The time spent at each stop 

is based on a timeout distribution defined in equation (13) 

𝑇𝑡𝑖𝑚𝑒𝑜𝑢𝑡 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥)                                                                              (13) 

2. Rush and Normal Conditions: The simulation adjusts the behavior of buses during peak 

hours. The rush-hour conditions increase both the dwell time and the passenger 

interaction rate, which can be modeled as in equation (14) 

𝑇𝑟𝑢𝑠ℎ = 𝑇𝑛𝑜𝑟𝑚𝑎𝑙 + 𝛽 × 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑉𝑜𝑙𝑢𝑚𝑒                                                             (14) 

Where 𝛽 is a scaling factor representing the additional delay during rush hours. 

Model Run and Data Collection: 
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1. Model Duration: The simulation runs for 24 hours to capture the daily dynamics of the 

bus system. The data collected includes passenger wait times, dwell times, and bus travel 

times between stops. Data is exported to an Excel file for analysis. 

2. Data Collection: The simulation collects data on various metrics such as: 

o Wait Times: Time passengers spend waiting at each stop. 

o Bus Utilization: The number of buses required at different times of the day. 

Algorithm 1: DALLAS-FORT Transportation 

// Initialize parameters 

initialize buses, busStops, simulationTime, numBuses, maxTime 

initialize busAttributes: speed = 30 MPH, passengerArrivalRate, boardingRate, alightingRate 

initialize stopAttributes: location, dwellTime, passengerCount 

initialize data structures: waitTimes, travelTimes, stopTimes 

 

// Function to create a bus and assign initial attributes 

function createBus(busID): 

    bus.speed = 30  // Set speed to 30 MPH 

    bus.location = startLocation 

    bus.arrivalTime = 0 

    bus.waitTime = 0 

    bus.dwellTime = 0 

    bus.stopIndex = 0  // Start at the first stop 

    return bus 

 

// Function to simulate the bus moving from one stop to the next 

function moveBus(bus): 

    currentStop = busStops[bus.stopIndex] 

    nextStopIndex = (bus.stopIndex + 1) % numStops  // Circular route 

    nextStop = busStops[nextStopIndex] 

 

    // Calculate travel time between stops 

    distance = calculateDistance(currentStop.location, nextStop.location) 

    travelTime = distance / bus.speed 

    bus.arrivalTime += travelTime 

 

    // Update bus wait time and dwell time at the stop 

    bus.waitTime = calculateWaitTime(currentStop) 

    bus.dwellTime = bus.waitTime + calculatePassengerInteractions(currentStop) 

 

    // Update bus location 

    bus.location = nextStop.location 

    bus.stopIndex = nextStopIndex 

 

    return bus 
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// Function to calculate wait time based on passenger interactions 

function calculateWaitTime(stop): 

    numPassengers = stop.passengerCount 

    return numPassengers / boardingRate + numPassengers / alightingRate 

 

// Function to calculate passenger interactions at the stop 

function calculatePassengerInteractions(stop): 

    if stop.isRushHour(): 

        return stop.passengerCount * rushHourDelayFactor 

    else: 

        return stop.passengerCount * normalHourDelayFactor 

 

// Function to check if it's rush hour 

function isRushHour(currentTime): 

    if currentTime >= rushStartTime and currentTime <= rushEndTime: 

        return true 

    else: 

        return false 

 

// Function to simulate bus operations over 24 hours 

function simulate(): 

    // Initialize buses 

    buses = [] 

    for i from 1 to numBuses: 

        bus = createBus(i) 

        buses.append(bus) 

 

    // Run simulation for 24 hours 

    currentTime = 0  // Start time 

    while currentTime < maxTime: 

        // For each bus, move to the next stop and update times 

        for bus in buses: 

            bus = moveBus(bus) 

            recordData(bus) 

         

        // Increment time step 

        currentTime += 1 // Can be in minutes, depending on granularity 

 

    // Export simulation data 

    exportData() 

 

// Function to record data for analysis 

function recordData(bus): 
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    waitTimes[bus.stopIndex].append(bus.waitTime) 

    travelTimes[bus.stopIndex].append(bus.arrivalTime) 

    stopTimes[bus.stopIndex].append(bus.dwellTime) 

 

// Function to export data to an Excel file or database 

function exportData(): 

    save(waitTimes, "wait_times.xlsx") 

    save(travelTimes, "travel_times.xlsx") 

    save(stopTimes, "stop_times.xlsx") 

 

// Main program to start the simulation 

simulate() 

Optimization in the context of the bus transit system involves improving the efficiency of 

bus operations to reduce issues like bus bunching, delays, and increased passenger wait times. 

The main objective is to optimize the bus schedules, reduce travel times, and balance the load on 

each bus, all while maintaining a consistent level of service. One approach is to adjust bus 

intervals based on real-time or predicted passenger demand, such as increasing the frequency of 

buses during rush hours and reducing it during off-peak times. Another optimization technique 

could involve dynamic adjustment of dwell times at bus stops depending on factors like 

passenger volume or delays at previous stops. The optimization process can also focus on 

reducing the time buses spend idle at stops or in traffic, which can be achieved through adjusting 

stop schedules, managing bus speeds, and strategically routing buses to avoid congestion. 

Algorithms, such as genetic algorithms, simulated annealing, or linear programming, can be 

applied to test different scheduling configurations and simulate their impact on key performance 

indicators like travel time, bus interval, and passenger wait times. 

4 Results and Discussion 

During model development, several different population sizes were tested to address wait 

time increas- es. Utilizing a brute force approach, we were able to identify a correlation between 

bus population and wait time. When the bus population size was limited to 4 total agents, the 

model exhibited fewer instances of bus bunching and shorter wait times. Moreover, when the 

population size was adjusted to 3 buses, the model ex- exhibited prolonged wait times. It is 

important to highlight that our model did not take bus capacity and passen- ger agents into 

consideration which may have impact- ed our results and brute-force approach in determining 

population size for buses. After running the final model, we concluded buses exhibited various 

waiting times depending on the bus stop they stopped at. The wait time metric informed us of 

instances of bus bunching which was made appar- ent when a negative wait time was calculated 

using the data that was exported from AnyLogic to Excel. For example, after running the model, 

the following wait times were recorded for each bus within the model. Bus 1 demonstrated wait 

times ranging from -3.774 to 63.35 (minutes), while Bus 2 demonstrated a wait time between -

3.201 and 66.114 (minutes). Lastly, Bus 3’s wait time spanned between -2.666 to 41.145 

(minutes). During peak hours (defined from 7 AM - 10 AM and 5 PM-8 PM) we witnessed an 

increase in bus bunching instances, which contributed to longer wait times at var- ious stops in 

the model. It is important to highlight that Bus 2 consistently had shorter wait times when com- 
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pared to other buses within the model. Data gathered from individual models exhibited 

variability due to the random probability distribution the model uses. How- ever, a consistent 

behavior emerged during rush hours which was the occurrence of increased bus bunching 

instances across the bus agent population.  The model provided insights into the relationship 

between bus population size and wait time. Furthermore, we were able to explore the impact of 

rush hour on bus bunching instances within our model. Using a brute-force approach we were 

able to demonstrate that limiting the bus population size to four agents resulted in fewer 

instances of bus bunching as well as shorter wait times. On the other hand, adjusting the 

population size to three buses led to longer wait times. During peak hours, an increase in bus 

bunch- ing was observed across the population of buses and all buses exhibited wait times >40 

minutes during this period. Further analysis utilizing this model can explore how the introduction 

of a passenger agent population as well as a bus capacity attribute affects wait time and instances 

of bus bunching shown in Figrue 3. 

 
Figure 3: Wait times at different bus stops 

Table 1: Dallas-Fort Worth Bus Transportation 

Bus Stop Time of 

Day 

Bus Arrival 

Time (mins) 

Wait 

Time 

(mins) 

Dwell 

Time 

(mins) 

Passenger 

Count 

Travel 

Time 

(mins) 

Bus Speed 

(MPH) 

Arlington Rush 

Hour 

5 3 2 15 5 30 

Arlington Normal 

Hour 

12 1.5 1 8 5 30 

Stop 1 Rush 

Hour 

10 4 3 20 5 30 

Stop 1 Normal 

Hour 

18 2 1.5 10 5 30 

Stop 2 Rush 

Hour 

15 4.5 3.5 25 5 30 

Stop 2 Normal 

Hour 

22 2.5 2 12 5 30 

Stop 3 Rush 

Hour 

20 5 4 30 5 30 

Stop 3 Normal 

Hour 

28 3 2.5 14 5 30 

Arlington Rush 

Hour 

30 6 4.5 18 5 30 

Arlington Normal 35 2 2 10 5 30 



 

 

 

51                                                                                         JSIHS, ISSN: 2584-2560,2024, vol.02, no.04  

__________________________________________________________________________________ 

 

_________________________________________________________________________________ 

 

Hour 

 
Figure 4: Bus Optimization time 

The table 1 and Figure 4 provide a detailed overview of the Dallas-Fort Worth bus 

transportation system during both rush hour and normal hours. It outlines key performance 

indicators such as bus arrival times, wait times, dwell times, passenger counts, travel times, and 

bus speeds at various bus stops along the route (Arlington, Stop 1, Stop 2, Stop 3). During rush 

hours, the buses arrive more frequently at each stop, leading to longer wait times and dwell times 

due to higher passenger volumes. For example, at Arlington during rush hour, the wait time is 3 

minutes and the dwell time is 2 minutes, with 15 passengers boarding. As the buses continue 

through the route, the passenger count increases, particularly at Stop 3, where the passenger 

count peaks at 30 passengers. These increased passenger numbers contribute to longer wait times 

and dwell times. In contrast, during normal hours, the buses experience fewer passengers and 

shorter wait times. At Arlington, the wait time is reduced to 1.5 minutes, and the dwell time 

decreases to just 1 minute, with only 8 passengers on board. The passenger count generally 

remains lower throughout the route, with a significant reduction in wait times and dwell times 

across all stops. 

For both rush hour and normal hour conditions, the travel time between stops remains 

consistent at 5 minutes, and the bus speed is fixed at 30 MPH, which helps maintain a steady 

pace across different times of the day. 
Table 2: optimization of Logistic Route 

Scenario Bus 

Interval 

(mins) 

Average 

Wait 

Time 

(mins) 

Average 

Travel 

Time 

(mins) 

Average 

Dwell 

Time 

(mins) 

Passenger 

Load 

(average) 

Bus 

Bunching 

(mins) 

Service 

Frequency 

(buses/hour) 

System 

Efficiency 

Scenario 

1: 

Baseline 

15 6.5 22 3.2 18 5 4 75% 

Scenario 

2: 

Optimized 

Rush 

Hour 

10 5 20 4 25 3 6 85% 
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Scenario 

3: 

Optimized 

Non-Peak 

Hours 

20 4.5 18 2.5 12 2.5 3 80% 

Scenario 

4: 

Optimized 

Full Day 

12 5 21 3 20 4 5 82% 

Scenario 

5: High 

Frequency 

During 

Rush 

Hours 

8 4.8 19 3.5 28 2.2 7 88% 

Scenario 

6: 

Reduced 

Bus 

Interval in 

Non-Peak 

25 3.5 17 2.2 10 1.5 2 78% 

 

 
Figure 5: Optimization Logistics for the Transportation System 

In figure 5 and Table 2 presents the optimization results for a bus transportation system 

under different scenarios, focusing on adjusting bus intervals, service frequencies, and other 
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performance metrics to improve overall system efficiency. In Scenario 1: Baseline, the bus 

interval is set at 15 minutes, leading to an average wait time of 6.5 minutes and average travel 

time of 22 minutes. The average dwell time is 3.2 minutes, and the passenger load is 18 

passengers per bus. Bus bunching, a key metric to evaluate service delivery, is 5 minutes, and the 

service frequency is 4 buses per hour. This scenario yields a system efficiency of 75%. Scenario 

2: Optimized Rush Hour reduces the bus interval to 10 minutes during rush hours, which 

improves the average wait time to 5 minutes and reduces average travel time to 20 minutes. The 

dwell time increases to 4 minutes due to higher passenger load (25 passengers), but bus bunching 

decreases to 3 minutes, suggesting that the buses are better spaced. With a service frequency of 6 

buses per hour, the system efficiency improves to 85%. In Scenario 3: Optimized Non-Peak 

Hours, the bus interval is extended to 20 minutes to match lower passenger demand. This results 

in a further reduction in average wait time (4.5 minutes) and average travel time (18 minutes). 

The dwell time is also shorter (2.5 minutes), and passenger load decreases to 12. Bus bunching is 

reduced to 2.5 minutes, with 3 buses operating per hour, leading to a moderate system efficiency 

of 80%. 

Scenario 4: Optimized Full Day applies optimized schedules throughout the day, 

balancing both peak and non-peak hours. The bus interval is reduced to 12 minutes, and the 

average wait time decreases to 5 minutes, with average travel time of 21 minutes. The dwell time 

is 3 minutes, and the passenger load is 20. The service frequency of 5 buses per hour results in a 

system efficiency of 82%. 

Scenario 5: High Frequency During Rush Hours focuses on increasing bus frequency 

during peak hours by reducing the bus interval to 8 minutes. This leads to a further reduction in 

average wait time (4.8 minutes) and average travel time (19 minutes). While the dwell time 

increases slightly to 3.5 minutes due to a higher passenger load (28 passengers), bus bunching is 

reduced to 2.2 minutes. With a service frequency of 7 buses per hour, the system achieves the 

highest efficiency of 88%. Finally, Scenario 6: Reduced Bus Interval in Non-Peak lengthens the 

bus interval to 25 minutes during off-peak hours. Although this reduces the average wait time to 

3.5 minutes and average travel time to 17 minutes, the dwell time decreases to 2.2 minutes. 

However, with a reduced passenger load (10) and bus bunching of 1.5 minutes, this 

configuration leads to a lower service frequency (2 buses per hour), resulting in a system 

efficiency of 78%. 

5 Conclusions 

The optimization of the bus transportation system for the Dallas-Fort Worth area has 

shown promising improvements in service efficiency and overall performance. By simulating 

different scenarios using AnyLogic, we were able to assess the impact of various factors such as 

bus intervals, wait times, travel times, and service frequencies. The results demonstrated that 

optimizing bus intervals during rush hours and non-peak times can significantly reduce wait 

times, improve travel times, and minimize bus bunching, thus enhancing the passenger 

experience. Furthermore, the increased service frequency during peak hours led to better system 

efficiency, with a notable increase in the number of buses per hour, reflecting a more robust and 

responsive transit system. Overall, the analysis highlighted that careful adjustments in 
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operational parameters can result in improved bus scheduling, better resource utilization, and a 

more efficient public transport system. 
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