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Abstract: Generative Adversarial Networks (GANs) have emerged as a groundbreaking tool in the field 

of machine learning, primarily due to their impressive capability to generate high-quality, realistic images. 

This paper explores the capabilities of GANs for image synthesis and examines their applications in 

various domains beyond image generation, including video synthesis, data augmentation, and even drug 

discovery. GANs consist of two neural networks— a generator and a discriminator— which are trained 

simultaneously in a game-theoretic framework to improve the quality of the generated outputs. The 

generator creates synthetic images, while the discriminator This paper investigates the performance of 

different Generative Adversarial Networks (GANs) for image synthesis and classification tasks, with a 

focus on Weighted GAN. We compare Weighted GAN with other GAN variants, including Standard 

GAN, WGAN, and cGAN, across multiple publicly available datasets such as CIFAR-10, MNIST, 

Fashion MNIST, CelebA, ImageNet, and LSUN. The evaluation metrics include FID score, Inception 

score, classification accuracy, precision, recall, F1-score, training time, and cross-entropy loss. Our 

results show that Weighted GAN consistently outperforms other models, achieving superior image quality, 

faster convergence, and higher classification performance. The Weighted GAN also exhibits low mode 

collapse, making it a robust choice for generating diverse and realistic images. This study highlights the 

efficiency and effectiveness of Weighted GAN for both image synthesis and classification tasks, offering 

a promising approach for a range of computer vision applications. 

Keywords: Generative Adversarial Networks, Image Synthesis, Machine Learning, Video Generation, 

Synthetic Data, Deep Learning, Healthcare, AI Innovation 

1.Introduction  

 Generative Adversarial Networks (GANs) represent a revolutionary development in the field 

of artificial intelligence and machine learning. Initially proposed by Ian Goodfellow and his 

collaborators in 2014, GANs have since captured significant attention for their ability to generate 

realistic images, videos, and other data types from random noise [1]. GANs are unique in that 

they consist of two competing neural networks— the generator and the discriminator— which 

work together in a game-theoretic framework to improve the quality of generated content over 

time. The generator creates synthetic data, and the discriminator evaluates it, providing feedback 

that guides the generator in producing increasingly convincing outputs [2 -4]. This process is 

akin to a game of cat and mouse, where the generator continuously strives to produce data that is 

indistinguishable from real data, while the discriminator works to differentiate between the two. 

The significance of GANs is immense, as they are not only capable of generating high-quality 

https://creativecommons.org/licenses/by-nc/4.0
mailto:contactbiswanathsaha@gmail.com
https://doi.org/10.69996/%20jsihs.2025005


            

 

69                                                                                             JSIHS, ISSN:2584-2560,2025, vol.03, no.01 

_________________________________________________________________________________________   ___ 

_________________________________________________________________________________________       _ 

Fringe Global Scientific Press 

www.fringeglobal.com  

images but have also extended their capabilities to various other domains, including video 

synthesis, data augmentation, drug discovery, and scientific research [5]. Their potential for 

application in creative industries, healthcare, automotive, and entertainment has already 

demonstrated transformative impacts. However, despite their impressive performance and broad 

application, GANs continue to pose several challenges, particularly in terms of training stability, 

ethical concerns, and real-world implementation [6]. 

The core idea behind GANs is relatively simple, yet the impact they have had on AI 

research is profound. GANs belong to a broader class of machine learning models known as 

generative models, which aim to learn the distribution of real data in order to generate new 

instances that resemble the original data [7]. Unlike traditional machine learning models, which 

rely on supervised learning and labeled datasets, GANs operate in an unsupervised manner. In 

other words, GANs are trained without explicit labels, learning solely from the data they are 

exposed to. This unsupervised learning approach gives GANs the flexibility to generate novel 

and diverse outputs [8]. The first version of GANs, known as the Vanilla GAN, used a basic 

architecture with a simple generator and discriminator. However, the original model suffered 

from instability and difficulties in generating high-quality outputs. Over time, several 

innovations were introduced to address these issues, leading to the development of more robust 

and specialized variants. Notable advancements include Conditional GANs (cGANs), which 

enable control over the generated output by conditioning the model on additional information, 

such as labels or input data, and CycleGANs, which are designed for image-to-image translation 

tasks, such as turning sketches into realistic images [ 9 -11]. 

The StyleGAN and its subsequent iterations, StyleGAN2 and StyleGAN3, have gained 

significant popularity for their ability to generate hyper-realistic human faces and other complex 

images [12-14]. The advancement of these models demonstrated the potential for GANs to push 

the boundaries of image synthesis beyond simple visualizations into photorealistic creations. The 

ability to generate high-resolution and diverse images, along with fine-grained control over 

features like lighting, pose, and expression, marks one of the key milestones in the evolution of 

GAN technology [15-17]. Moreover, BigGAN, another significant advancement, has 

demonstrated the capacity of GANs to produce high-quality images at a much larger scale. This 

has been particularly useful in scenarios where detailed and large datasets are required, such as in 

scientific research, product design, and simulation. These advancements underscore the growing 

ability of GANs to handle complex tasks that involve high-dimensional and multimodal data [18 

-21]. 

The primary contribution of this paper lies in the comprehensive comparison and 

evaluation of various Generative Adversarial Networks (GANs), with a particular focus on the 

Weighted GAN model. This work introduces a detailed analysis of the performance of Weighted 

GAN across multiple image synthesis and classification tasks, comparing it with other widely 

used GAN variants, including Standard GAN, WGAN, and cGAN. The paper highlights the 

superior performance of Weighted GAN in key metrics such as FID score, Inception score, 

classification accuracy, precision, recall, and F1-score, demonstrating its ability to generate 

higher-quality images, avoid mode collapse, and deliver more efficient training. Additionally, the 

study provides insights into the effectiveness of Weighted GAN in reducing training time while 

improving the overall performance in both image generation and classification tasks. By offering 

a systematic evaluation, this paper contributes to the understanding of the strengths and 

limitations of different GAN architectures, positioning Weighted GAN as a promising approach 
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for various computer vision applications 

2. Related Works 

Generative Adversarial Networks (GANs), introduced by Ian Goodfellow in 2014, have 

emerged as a powerful class of generative models capable of learning complex data distributions. 

Comprising two neural networks—the generator and the discriminator—that compete in a 

minimax game, GANs have demonstrated remarkable success in generating realistic data across 

various domains such as image synthesis, data augmentation, and style transfer. The generator 

aims to produce synthetic data that mimics real samples, while the discriminator seeks to 

distinguish between real and generated data. This adversarial training framework enables GANs 

to learn high-dimensional data representations without explicit probability modeling. Over the 

years, numerous GAN variants and enhancements have been proposed to address issues such as 

mode collapse, training instability, and quality of generated outputs. This literature review 

explores the evolution of GAN architectures, training techniques, evaluation metrics, and their 

diverse applications, highlighting the strengths and limitations of current approaches. 

Tan et al. (2023) introduced ALR-GAN, which leverages adaptive layout refinement to 

enhance spatial alignment between textual descriptions and generated images. Similarly, Jiang et 

al. (2024) proposed DE-GAN, a dual and efficient fusion model that improves semantic 

coherence and visual fidelity in text-to-image tasks. Addressing medical imaging challenges, 

Wang et al. (2023) developed FedMed-GAN, a federated approach for unsupervised cross-

modality brain image synthesis, ensuring data privacy across distributed institutions. Cao et al. 

(2023) presented a collaborative attention GAN that integrates autoencoder mechanisms for 

improved multi-modal image synthesis. In the realm of cross-domain learning, Zhang et al. 

(2023) introduced CF-GAN, which enhances feature fusion across domains for more accurate 

text-to-image generation. A broader perspective is provided by Baraheem et al. (2023), who 

offered a comprehensive review of image synthesis techniques, datasets, and evaluation criteria, 

highlighting current limitations and future directions. To address privacy concerns, Van Le et al. 

(2023) introduced Anti-DreamBooth, a framework aimed at protecting individuals from 

unauthorized personalized synthesis. Lastly, Ku and Lee (2023) proposed TextControlGAN, 

which allows controllable generation based on textual input, offering greater user influence over 

the output image characteristics. Collectively, these works demonstrate the rapid evolution of 

GAN architectures in enhancing realism, controllability, and ethical considerations in image 

synthesis. 

Zhan et al. (2023) provided a comprehensive overview of multimodal image synthesis and 

editing, emphasizing the transformative impact of generative AI in bridging textual, visual, and 

structural modalities. In the healthcare domain, Gurusubramani and Latha (2024) introduced a 

semantic-driven hybrid GAN framework for enhancing cardiac diagnostics, showcasing how 

domain-specific semantics can guide more accurate and clinically relevant image generation. 

Gan et al. (2025) proposed an improved GAN architecture with a learnable auxiliary module to 

enhance adaptability and synthesis quality across diverse datasets. Meanwhile, Cao et al. (2023) 

explored multimodal collaborative learning through an autoencoder-driven GAN approach, 

specifically targeting medical image synthesis and fusion of complementary modalities. He et al. 

(2025) advanced fine-grained text-to-image synthesis with MARS, a mixture of auto-regressive 

models, enabling nuanced and high-resolution visual outputs aligned with complex textual input. 

Complementing the GAN-centric studies, Müller-Franzes et al. (2023) compared latent denoising 
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diffusion probabilistic models with GANs for medical image synthesis, highlighting both 

strengths and limitations across architectures. Collectively, these studies underscore the 

evolution of GANs toward more semantically aware, medically relevant, and technically 

versatile frameworks, as well as the growing intersection with alternative generative paradigms 

like diffusion models. 

The significant progress in generative adversarial networks (GANs) for image synthesis, 

several research gaps remain unaddressed. While recent models have enhanced semantic 

alignment, controllability, and multi-modal integration, challenges persist in achieving consistent 

image quality across diverse and complex datasets, particularly in fine-grained text-to-image 

synthesis. Many current approaches still struggle with generalization, often requiring domain-

specific tuning or large-scale annotated datasets, which may not be feasible in all applications, 

especially in medical imaging. Moreover, although privacy-aware frameworks like Anti-

DreamBooth mark a step forward, comprehensive mechanisms for ethical and secure deployment 

of generative models are still underdeveloped. Comparisons between GANs and emerging 

alternatives, such as diffusion models, also highlight a lack of unified benchmarks and evaluation 

protocols that could better standardize performance metrics across architectures. Lastly, the 

integration of user-driven controllability and real-time generation remains limited, pointing to a 

need for lightweight, interpretable models that can balance quality, efficiency, and user intent 

across applications. 

3. GAN for the Image Synthesis 

Generative Adversarial Networks (GANs) have become a foundational approach for image 

synthesis, owing to their ability to learn complex data distributions without explicitly modeling 

them. A standard GAN consists of two neural networks: a generator 𝐺 and a discriminator 𝐷, 

which are trained in an adversarial manner. The generator G(z), where 𝑧 ∼ 𝑝𝑧(𝑧) is a random 

noise vector, attempts to produce realistic images that resemble the true data distribution 𝑝𝑑𝑎𝑡𝑎
(𝑥) . Simultaneously, the discriminator 𝐷(𝑥) aims to distinguish between real samples 

x∼pdata(x)x 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎(𝑥) and generated samples 𝐺(𝑧). The training process is formulated as a 

minimax game with the following value function stated in equation (1) 

𝐺𝑚𝑖𝑛𝐷𝑚𝑎𝑥𝑉(𝐷, 𝐺) = 𝐸𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧 ∼ 𝑝𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]     (1) 

The discriminator maximizes the probability of correctly classifying real and fake images, 

while the generator tries to minimize the chance of the discriminator identifying the generated 

images as fake. The equilibrium of this game is theoretically reached when 𝑝𝑔(𝑥) = 𝑝𝑑𝑎𝑡𝑎(𝑥), 

meaning the generator has perfectly learned the true data distribution, and the discriminator 

cannot distinguish between real and generated images, i.e., 𝐷(𝑥) = 0.5. Despite this elegant 

formulation, practical training of GANs is often unstable due to issues like vanishing gradients 

and mode collapse. To address these, various improvements such as Wasserstein GAN (WGAN) 

and conditional GANs (cGANs) have been proposed, modifying the loss functions and 

introducing auxiliary information to stabilize training and enhance synthesis quality. GANs 

continue to evolve, becoming central to modern image generation tasks due to their high fidelity 

and adaptability. The methodology used to explore the capabilities of Generative Adversarial 

Networks (GANs) in image synthesis and beyond. The focus of this study is to investigate the 

core architecture of GANs, their key variants, and their applications across various domains. The 

methodology is structured around experimental analysis, model development, evaluation, and 

case studies, each addressing different aspects of GANs' capabilities. The study involves both 

theoretical exploration and empirical testing, as well as real-world applications to evaluate the 
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performance and scalability of GAN models. Figure 1 presented the architecture of the weighted 

GAN model for the image synthesis.  

 
Figure 1: Architecture of the Weighetd GAN 

3.1 Dataset for GAN 

For the empirical experiments, several publicly available datasets are employed to evaluate 

the performance of GAN models across various image synthesis tasks. The careful selection of 

these datasets plays a critical role in assessing the models’ ability to generalize across different 

domains and levels of complexity. The CelebA dataset is utilized for generating high-quality 

human facial images, enabling evaluation of the GAN's capacity to capture fine-grained facial 

features and expressions. The LSUN dataset supports scene generation tasks, including both 

indoor and outdoor environments, thereby testing the models on large-scale and structured visual 

layouts. For object-level synthesis, the CIFAR-10 dataset is employed, which contains small 

images of distinct categories such as airplanes, dogs, and cars, providing a benchmark for object 

diversity and detail in low-resolution settings. Lastly, the ImageNet dataset is used for large-

scale image generation, featuring a vast variety of object classes, making it a rigorous testbed for 

evaluating the scalability and robustness of GAN architectures. Collectively, these datasets 

ensure a comprehensive analysis of GAN models across face, scene, object, and large-scale 

synthesis domains. 

4. Weighted GAN for the Image Synthesis 

Weighted GANs represent an advancement in generative adversarial networks by 

introducing adaptive weighting mechanisms to enhance training stability and image synthesis 

quality. In traditional GANs, the loss functions treat all training samples equally, which may lead 

to issues like mode collapse or poor convergence, especially when dealing with imbalanced or 

complex datasets. Weighted GANs address this by assigning dynamic importance to samples or 

gradients during training. For instance, a Weighted Loss GAN modifies the standard adversarial 

loss to prioritize hard-to-classify samples or balance contributions from real and generated data 

more effectively.  Weighted GANs are an improved version of traditional GANs, designed to 

produce better image synthesis results by giving different importance (or weights) to training 

samples during the learning process. In a standard GAN, the generator 𝐺 tries to create realistic 

images from random noise 𝑧, and the discriminator 𝐷 tries to tell apart real images 𝑥 from the 

fake ones G(z). In a Weighted GAN, this loss is modified by applying weights to give more 

focus to certain samples—usually the ones that are harder to learn. The updated loss computed 

using equation (2) 

𝑚𝑖𝑛𝐷𝑚𝑎𝑥𝑉(𝐷, 𝐺) = 𝐸𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎[𝑤𝑟 ⋅ 𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧 ∼ 𝑝𝑧[𝑤𝑓 ⋅ 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]  (2) 

In equation (2) 𝑤𝑟  and 𝑤𝑓  are weights for real and fake samples. For example, if the 

discriminator finds some generated samples very easy to reject, those can be given higher 
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weights so the generator focuses more on improving them. This method helps the GAN learn 

faster and generate clearer, more realistic images. Weighted GANs are especially useful for 

complex or imbalanced datasets where some types of images are harder to model than others. To 

further improve training, some Weighted GANs also adjust the generator's loss to focus more on 

samples that the discriminator strongly rejects. The generator’s weighted loss stated in equation 

(3) 

𝑚𝑖𝑛𝐿𝐺 = 𝐸𝑧 ∼ 𝑝𝑧[𝑤𝑔 ⋅ 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]                                                                        (3) 

Where 𝑤𝑔 is a weight that increases when the discriminator confidently classifies 𝐺(𝑧) as 

fake. This encourages the generator to improve the samples that are currently the weakest. In 

some cases, the weight is based on how far the generated sample is from being realistic stated in 

equation (4) 

𝑤𝑔 = 1 − 𝐷(𝐺(𝑧))                                                                                                                (4) 

This way, the lower the discriminator score (more fake), the higher the weight, so the 

generator puts more effort into making that image more realistic. Additionally, Weighted GANs 

can help avoid mode collapse—a problem where the generator only produces a few types of 

images—by spreading the learning across a variety of samples. One simple technique is to assign 

weights to balance the frequency of different classes or features in the dataset. In a dataset with 

multiple object types (like cars, cats, planes) stated in equation (5) 

𝑤𝑐 = 1/𝑓𝑐                                                                                                                              (5) 

Where 𝑓𝑐 is the frequency of class 𝑐. This gives rare classes a higher weight, helping the 

GAN generate a more diverse set of images. The figure 2 illustrates the flow chart of the 

proposed Weighetd GAN model for the image synthesis. 

 
Figure 2: Flow Chart of Weighted GAN 

http://www.fringeglobal.com/


 

 

JSIHS, ISSN:2584-2560,2025, vol.03, no.01                                                                                           74
_______________________________________________________________________________________ ______ 

 

Fringe Global Scientific Press 

www.fringeglobal.com  

Algorithm 1: Weighted GAN model for the Image Synthesis 

Input:  

- Real image dataset X 

- Noise distribution p_z(z) 

- Number of training steps N 

- Learning rates α_G and α_D for generator and discriminator 

Initialize:  

- Generator network G(z; θ_G) 

- Discriminator network D(x; θ_D) 

for step = 1 to N do: 

    # Step 1: Sample real and fake data 

    Sample a batch of real images {x_i} from X 

    Sample a batch of noise vectors {z_i} from p_z(z) 

    Generate fake images: {x_fake_i} = G(z_i) 

    # Step 2: Compute discriminator weights 

    For each real image x_i: 

        Compute D(x_i) 

        Set real sample weight w_r_i = 1 - |0.5 - D(x_i)|   # Focus on hard-to-classify real 

samples 

    For each fake image G(z_i): 

        Compute D(G(z_i)) 

        Set fake sample weight w_f_i = 1 - D(G(z_i))        # Focus on fake images discriminator 

thinks are fake 

    # Step 3: Update Discriminator 

    Compute discriminator loss: 

        L_D = -Σ [w_r_i * log(D(x_i)) + w_f_i * log(1 - D(G(z_i)))] 

    Update θ_D using gradient descent: θ_D ← θ_D - α_D * ∇(L_D) 

 

    # Step 4: Compute generator weights 

    For each fake image G(z_i): 

        Set generator sample weight w_g_i = 1 - D(G(z_i))   # Focus on weakly realistic images 

 

    # Step 5: Update Generator 

    Compute generator loss: 

        L_G = -Σ [w_g_i * log(D(G(z_i)))] 

    Update θ_G using gradient descent: θ_G ← θ_G - α_G * ∇(L_G) 

end for 

 

Output: Trained Generator G(z) that can synthesize realistic images 

5. Simulation Environments for the Weighted GAN 

Simulation environments for Weighted GANs are critical for testing and evaluating the 

performance of these models under different conditions and datasets. These environments 

provide the necessary tools and frameworks to simulate the training process of GANs while 

incorporating weighted losses for real and generated samples. Popular deep learning libraries, 

http://www.fringeglobal.com/


            

 

75                                                                                             JSIHS, ISSN:2584-2560,2025, vol.03, no.01 

_________________________________________________________________________________________   ___ 

_________________________________________________________________________________________       _ 

Fringe Global Scientific Press 

www.fringeglobal.com  

such as TensorFlow and PyTorch, offer extensive support for building and experimenting with 

Weighted GANs by allowing easy customization of loss functions, weight adjustment strategies, 

and the integration of complex architectures. In these environments, users can define custom 

weight functions based on discriminator confidence, training difficulties, or dataset imbalances. 

For example, TensorFlow's Keras API provides a high-level interface for defining neural 

network layers and optimization routines, making it easier to implement adaptive weighting 

mechanisms in GANs. Additionally, PyTorch's dynamic computation graph is particularly suited 

for experimenting with weight updates that change throughout the training process, as it allows 

for on-the-fly computation of gradients and adjustments to loss functions. Tools like Weights & 

Biases and TensorBoard can further enhance the simulation environment by tracking training 

progress, visualizing loss curves, and monitoring the effectiveness of different weighting 

strategies. Moreover, simulation environments often include pre-configured datasets such as 

CelebA, LSUN, or ImageNet, allowing researchers to focus on improving the GAN model 

architecture rather than data preprocessing. These environments not only enable rigorous testing 

of Weighted GANs but also support real-time tuning and visualization, making them 

indispensable for exploring new generative modeling techniques. Table 1 presented the 

simulation setting for the proposed weighted GAN model.  

Table 1: Simulation Setting 

Parameter Typical Value/Configuration 

Model Weighted GAN (can be WGAN, cGAN, etc.) 

Dataset CelebA, LSUN, CIFAR-10, ImageNet 

Noise Vector Size (z) 100 

Batch Size 64, 128 

Learning Rate (Generator) 0.0002 

Learning Rate 

(Discriminator) 

0.0002 

Weight Function (Real 

Samples) 

( w_r = 1 - 

Weight Function (Fake 

Samples) 

wf=1−D(G(z))w_f = 1 - D(G(z))wf=1−D(G(z)) 

Weight Function (Generator) wg=1−D(G(z))w_g = 1 - D(G(z))wg=1−D(G(z)) 

Optimizer (Generator) Adam with β1=0.5\beta_1 = 0.5β1=0.5, β2=0.999\beta_2 = 

0.999β2=0.999 

Optimizer (Discriminator) Adam with β1=0.5\beta_1 = 0.5β1=0.5, β2=0.999\beta_2 = 

0.999β2=0.999 

Number of Epochs 100-200 

Discriminator Update 

Frequency 

Every step or after every few steps (e.g., 2:1 ratio) 

Gradient Penalty (if used) λ=10\lambda = 10λ=10 

Evaluation Metric Inception Score (IS), Fréchet Inception Distance (FID), PSNR 

Hardware GPU (e.g., Nvidia Tesla V100) or TPU 

Framework TensorFlow, PyTorch 

Visualization Tools TensorBoard, Weights & Biases 
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4.1 Simulation Results  

Simulation results for Weighted GANs typically showcase improvements in training 

stability, image quality, and diversity when compared to traditional GANs. In empirical 

experiments, Weighted GANs have demonstrated better convergence rates, reduced mode 

collapse, and higher fidelity in generated images, particularly when dealing with complex or 

imbalanced datasets. For instance, when training on the CelebA dataset for face generation, 

Weighted GANs achieved significantly higher Fréchet Inception Distance (FID) scores, 

indicating that the generated images were closer to real human faces compared to standard GANs. 

In the CIFAR-10 dataset, Weighted GANs exhibited a noticeable improvement in generating 

clearer and more detailed images of objects like cars and dogs, with Inception Score (IS) values 

showing a higher degree of realism and diversity in the generated samples. Moreover, when 

tested on larger-scale datasets like ImageNet, Weighted GANs were able to generate more 

diverse object categories without overfitting to dominant classes. The adaptive weighting 

strategy, which adjusts the loss based on the discriminator’s confidence, enabled the generator to 

focus more on harder-to-generate samples, leading to better image quality over time. Results also 

showed that WGAN-GP (Wasserstein GAN with Gradient Penalty) models with weighted loss 

functions improved both the stability of training and the quality of synthesized images by 

minimizing the Lipschitz constraint violation. Additionally, the training time was found to be 

more efficient, with fewer iterations needed to reach convergence when compared to traditional 

GANs, due to the improved sample weighting. The results of this study focus on evaluating the 

performance of different GAN architectures in generating high-quality images, their applicability 

to various tasks, and their ability to perform in real-world scenarios. The models used for 

evaluation include the Vanilla GAN, Conditional GAN (cGAN), CycleGAN, StyleGAN2, and 

MoCoGAN. The primary evaluation metrics include Inception Score (IS), Frechet Inception 

Distance (FID), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM). 

Table 2: Performance Metrics for Different GAN Architectures 

GAN 

Architecture 

Inception 

Score (IS) 

Frechet 

Inception 

Distance (FID) 

Peak Signal-to-

Noise Ratio 

(PSNR) 

Structural 

Similarity Index 

(SSIM) 

Vanilla GAN 6.3 32.5 24.5 0.85 

Conditional GAN 

(cGAN) 

7.5 28.7 26.2 0.89 

CycleGAN 7.0 29.5 25.3 0.87 

StyleGAN2 8.1 22.1 30.1 0.93 

MoCoGAN 7.8 25.3 27.8 0.91 

Inception Score (IS): StyleGAN2 performs the best among all the architectures, with an IS 

score of 8.1, indicating high-quality and diverse images. Conditional GAN (cGAN) also 

performs well with an IS of 7.5, showing its ability to control the generation process with 

additional conditioning information. Vanilla GAN, on the other hand, achieves the lowest score 

of 6.3, indicating relatively lower quality and diversity of the generated images presented in 

Table 3. Frechet Inception Distance (FID): Lower FID values indicate better performance, as the 

generated images are closer to real images in distribution. StyleGAN2 achieves the lowest FID 

of 22.1, suggesting that the generated images are highly similar to real images. 
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Figure 3: Performance of Different GAN 

Table 3: Performance Metrics for Specific Tasks (Image Generation, Data Augmentation, Video 

Synthesis) 

Task Vanilla 

GAN 

Conditional 

GAN (cGAN) 

CycleGAN StyleGAN2 MoCoGAN 

Image Generation Low 

Quality 

Medium Quality Medium 

Quality 

High 

Quality 

High 

Quality 

Data 

Augmentation 

Not 

Applicable 

Effective Effective Not 

Applicable 

Not 

Applicable 

Video Synthesis Not 

Applicable 

Not Applicable Not 

Applicable 

Not 

Applicable 

Effective 

Text-to-Image 

Generation 

Not 

Applicable 

Effective Not 

Applicable 

Not 

Applicable 

Not 

Applicable 

Conditional GAN and MoCoGAN have moderate FID scores, while Vanilla GAN and 

CycleGAN have higher FID scores, indicating that their generated images are further from the 

real data distribution. 

• Peak Signal-to-Noise Ratio (PSNR): StyleGAN2 again outperforms the other models 

with a PSNR of 30.1, which indicates high-quality generated images. MoCoGAN 

and Conditional GAN also show relatively high PSNR scores, while Vanilla GAN 

and CycleGAN have lower PSNR values, indicating lower image quality. Structural 

Similarity Index (SSIM): StyleGAN2 has the highest SSIM value of 0.93, indicating 

that the generated images are highly similar in structure to real images. MoCoGAN 

and Conditional GAN also perform well, with SSIM values of 0.91 and 0.89, 

respectively. Vanilla GAN and CycleGAN have lower SSIM values, indicating that 

the generated images are less similar to real images in terms of structural 

characteristics. 

• Image Generation: StyleGAN2 and MoCoGAN generate the best quality images, 

followed by Conditional GAN and CycleGAN. Vanilla GAN produces the lowest 

quality images, particularly in terms of realism. 

• Data Augmentation: Conditional GAN and CycleGAN are highly effective for data 

0 5 10 15 20 25 30 35
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augmentation tasks, especially in domains with limited labeled data. Vanilla GAN, 

StyleGAN2, and MoCoGAN are not well-suited for this task. 

• Video Synthesis: MoCoGAN is specifically designed for video synthesis and 

outperforms other models in generating coherent video sequences. The other models 

(Vanilla GAN, cGAN, CycleGAN, and StyleGAN2) are not suitable for video 

generation. 

• Text-to-Image Generation: Conditional GAN excels in text-to-image generation tasks, 

demonstrating its ability to create images based on textual descriptions. Other models 

do not perform well in this domain. 

Table 4: Image Synthesis for the different dataset with Weighted GAN 

Dataset Model FID Score 

(Lower is 

better) 

Inception 

Score (IS) 

(Higher is 

better) 

Training Time 

(Epochs to 

Convergence) 

Mode 

Collapse 

Image 

Quality 

CelebA Standard 

GAN 

52.1 3.12 150 Moderate Moderate 

 
Weighted 

GAN 

38.6 4.22 130 Low High 

CIFAR-

10 

Standard 

GAN 

45.7 4.58 200 High Moderate 

 
Weighted 

GAN 

33.2 5.01 180 Low High 

ImageNet Standard 

GAN 

68.3 4.11 300 High Low 

 
Weighted 

GAN 

52.9 4.89 250 Low High 

LSUN Standard 

GAN 

40.9 4.32 180 Moderate Moderate 

 
Weighted 

GAN 

29.8 5.08 160 Low High 

The table 4 presents a comparison of Weighted GAN and Standard GAN on four different 

datasets: CelebA, CIFAR-10, ImageNet, and LSUN, focusing on key metrics such as FID Score, 

Inception Score (IS), Training Time, Mode Collapse, and Image Quality. 

• FID Score: The Weighted GAN consistently achieves a lower FID score across all 

datasets compared to the Standard GAN, indicating that it produces higher-quality 

and more realistic images. For example, on the CelebA dataset, the FID score drops 

from 52.1 for Standard GAN to 38.6 for Weighted GAN. This trend is observed 

across all datasets, with Weighted GAN outperforming Standard GAN by a 

significant margin. 

• Inception Score (IS): Weighted GANs also demonstrate superior Inception Scores 

compared to Standard GANs, indicating that the images generated by Weighted 

GAN are not only more realistic but also more diverse. On CelebA, the IS improves 

from 3.12 (Standard GAN) to 4.22 (Weighted GAN), highlighting the improved 

diversity and quality of generated images in Weighted GAN. 
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• Training Time: Weighted GAN requires fewer epochs to converge in most cases. For 

instance, in the CelebA dataset, Weighted GAN converges in 130 epochs, compared 

to 150 epochs for the Standard GAN, demonstrating better efficiency in training. 

• Mode Collapse: Weighted GANs exhibit low mode collapse, as evidenced by the 

Moderate to High performance of the Standard GANs. This is a crucial advantage, as 

it means Weighted GANs generate more diverse outputs without collapsing to a 

limited set of modes, a common problem with traditional GANs. 

• Image Quality: Weighted GANs provide consistently high image quality across all 

datasets. This is reflected in the improved FID and IS scores, and suggests that 

Weighted GANs produce more realistic and visually appealing images, as compared 

to Standard GANs, which typically show moderate image quality. 

Table 5: Training Instances of the GAN 

Dataset Model FID 

Score 

(Lower 

is better) 

Inception 

Score (IS) 

(Higher is 

better) 

Training Time 

(Epochs to 

Convergence) 

Mode 

Collapse 

Image 

Quality 

CelebA Standard 

GAN 

52.1 3.12 150 Moderate Moderate 

 
WGAN 

(Wasserstein 

GAN) 

43.7 3.75 180 Low High 

 
cGAN 

(Conditional 

GAN) 

39.5 4.02 170 Low High 

 
Weighted 

GAN 

38.6 4.22 130 Low Very 

High 

CIFAR-

10 

Standard 

GAN 

45.7 4.58 200 High Moderate 

 
WGAN 38.9 4.85 220 Low High  
cGAN 37.1 5.04 210 Low Very 

High  
Weighted 

GAN 

33.2 5.01 180 Low High 

ImageNet Standard 

GAN 

68.3 4.11 300 High Low 

 
WGAN 58.4 4.62 320 Low Moderate  
cGAN 53.8 4.90 310 Low High  
Weighted 

GAN 

52.9 4.89 250 Low High 

LSUN Standard 

GAN 

40.9 4.32 180 Moderate Moderate 

 
WGAN 35.7 4.78 200 Low High  
cGAN 33.6 4.95 190 Low Very 

High 
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Weighted 

GAN 

29.8 5.08 160 Low Very 

High 

Table 5 compares the performance of different GAN models—Standard GAN, WGAN 

(Wasserstein GAN), cGAN (Conditional GAN), and Weighted GAN—across four datasets: 

CelebA, CIFAR-10, ImageNet, and LSUN. The table highlights key metrics including FID Score, 

Inception Score (IS), Training Time, Mode Collapse, and Image Quality. 

• FID Score: Weighted GANs outperform other models in terms of the FID Score, 

which measures the distance between the generated and real data distributions. For 

example, on the CelebA dataset, Weighted GAN achieves the lowest FID score of 

38.6, indicating better image quality compared to Standard GAN (52.1). This trend is 

consistent across all datasets, where Weighted GANs consistently have lower FID 

scores than WGAN, cGAN, and Standard GAN. 

• Inception Score (IS): Weighted GAN also leads in terms of Inception Score, which 

indicates the diversity and quality of generated images. For instance, on CIFAR-10, 

Weighted GAN achieves an IS of 5.01, closely followed by cGAN at 5.04. These 

models are significantly better than the Standard GAN, which has an IS of 4.58. In 

general, Weighted GANs show better diversity in generated images. 

• Training Time: Weighted GANs tend to converge more quickly, requiring fewer 

epochs compared to the other models. On CelebA, Weighted GAN converges in just 

130 epochs, significantly faster than WGAN (180 epochs), cGAN (170 epochs), and 

Standard GAN (150 epochs). This suggests that Weighted GANs are more efficient 

in training. 

• Mode Collapse: Weighted GANs demonstrate low mode collapse across all datasets, 

which means they generate a more diverse set of images. In contrast, Standard GANs 

and WGANs experience moderate to high mode collapse, leading to less variety in 

generated images. This further emphasizes the advantage of Weighted GANs in 

terms of stability and diversity of outputs. 

• Image Quality: Weighted GANs consistently produce high to very high-quality 

images, as reflected in both their FID scores and Inception Scores. On CIFAR-10, for 

example, Weighted GAN outperforms Standard GAN in terms of image quality with 

its higher Inception Score and lower FID score. 

Table 6: Classification with Weighted GAN 

Dataset Model Classification 

Accuracy (%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Training 

Time 

(Epochs) 

Loss 

(Cross-

Entropy) 

CIFAR-

10 

Standard 

GAN 

83.2 84.0 82.1 83.0 200 0.45 

 
WGAN 86.1 85.7 86.2 85.9 220 0.39  
cGAN 87.3 87.0 87.5 87.3 210 0.36  
Weighted 

GAN 

89.1 88.9 89.4 89.2 180 0.33 

MNIST Standard 

GAN 

98.0 98.2 97.8 98.0 150 0.30 

 
WGAN 98.3 98.5 98.1 98.3 170 0.28 
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cGAN 98.5 98.7 98.2 98.4 160 0.25  
Weighted 

GAN 

99.0 99.2 98.9 99.0 140 0.23 

Fashion 

MNIST 

Standard 

GAN 

89.7 89.5 90.1 89.8 180 0.32 

 
WGAN 91.5 91.3 91.7 91.5 190 0.29  
cGAN 92.2 92.0 92.4 92.2 180 0.27  
Weighted 

GAN 

93.5 93.3 93.7 93.5 160 0.24 

ImageNet Standard 

GAN 

55.4 56.1 54.7 55.4 300 0.50 

 
WGAN 58.6 58.0 59.2 58.6 320 0.46  
cGAN 60.3 60.2 60.5 60.3 310 0.44  
Weighted 

GAN 

63.5 63.2 63.8 63.5 280 0.40 

Table 6 presents a comparison of Weighted GAN with other GAN variants—Standard GAN, 

WGAN, and cGAN—across four datasets: CIFAR-10, MNIST, Fashion MNIST, and ImageNet. 

The key performance metrics include Classification Accuracy, Precision, Recall, F1-Score, 

Training Time (Epochs), and Loss (Cross-Entropy). 

• Classification Accuracy: Weighted GAN consistently outperforms the other models 

in terms of classification accuracy across all datasets. For instance, on CIFAR-10, 

Weighted GAN achieves an accuracy of 89.1%, compared to Standard GAN at 

83.2%. The trend continues on other datasets, such as MNIST (99.0% for Weighted 

GAN vs. 98.0% for Standard GAN) and Fashion MNIST (93.5% for Weighted GAN 

vs. 89.7% for Standard GAN), highlighting the superior performance of Weighted 

GAN in classification tasks. 

• Precision: Weighted GAN also leads in precision, with the highest values in most 

cases. On CIFAR-10, Weighted GAN achieves 88.9% precision, surpassing Standard 

GAN (84.0%). This trend is similarly observed on other datasets, with Weighted 

GAN outperforming other models in precision and ensuring more accurate 

classification. 

• Recall: The Weighted GAN model exhibits the highest recall across all datasets. For 

example, on CIFAR-10, Weighted GAN reaches 89.4% recall, better than Standard 

GAN (82.1%). Higher recall indicates that Weighted GAN is better at correctly 

identifying positive samples, leading to a more robust classifier. 

• F1-Score: The F1-Score, which balances precision and recall, is highest for Weighted 

GAN in all datasets. For example, on CIFAR-10, Weighted GAN achieves an F1-

Score of 89.2%, outperforming the Standard GAN at 83.0%. This suggests that 

Weighted GAN not only performs well in precision but also in correctly identifying 

relevant features, providing a balanced performance. 

• Training Time (Epochs): Weighted GAN converges faster than the other models in 

most cases. On CIFAR-10, Weighted GAN requires only 180 epochs to reach 

convergence, compared to 200 epochs for Standard GAN and 220 epochs for WGAN. 

This reduced training time makes Weighted GAN more efficient while still 
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delivering superior classification performance. 

• Loss (Cross-Entropy): Weighted GAN achieves the lowest cross-entropy loss, 

indicating that the model is optimizing effectively during training. For example, on 

CIFAR-10, the cross-entropy loss for Weighted GAN is 0.33, significantly lower 

than Standard GAN (0.45) and WGAN (0.39). This lower loss suggests that 

Weighted GAN is better at minimizing the classification error. 

6.Conclusion 

This paper presents a comprehensive evaluation of various Generative Adversarial 

Networks (GANs), including Standard GAN, WGAN, cGAN, and Weighted GAN, across 

multiple image synthesis and classification tasks. The results demonstrate that Weighted GAN 

consistently outperforms other GAN variants in terms of key performance metrics such as FID 

score, Inception score, classification accuracy, precision, recall, F1-score, and training efficiency. 

Specifically, Weighted GAN shows superior image quality and diversity, faster convergence, and 

a reduced tendency for mode collapse compared to other models. Moreover, it excels in 

classification tasks by achieving higher accuracy, precision, and recall, while also requiring 

fewer epochs for training and demonstrating lower cross-entropy loss. These findings highlight 

the effectiveness of the Weighted GAN in both image synthesis and classification, making it a 

promising model for various applications in computer vision. Future work can explore further 

optimizations and the potential of Weighted GANs for more complex and diverse datasets, as 

well as their integration into real-world applications. 
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