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Abstract: An IoT-enabled motor drive vehicle integrates Internet of Things (IoT) technology with 

traditional vehicle systems to enhance control, monitoring, and automation. Sensors and connected 

devices within the vehicle collect real-time data on parameters such as speed, battery status, motor 

performance, and environmental conditions. This data is transmitted to cloud-based platforms for analysis, 

enabling remote diagnostics, predictive maintenance, and optimization of vehicle performance. IoT 

integration also facilitates features like vehicle tracking, smart navigation, and user-specific adjustments, 

improving overall efficiency, safety, and user experience. This paper investigates the utilization of IoT 

enabled Programmable Logic Controller (PLC) technology to enhance fault detection in new energy 

vehicle (NEV) motor drive systems. With the increasing adoption of electric vehicles, ensuring the safety 

and reliability of motor drive systems becomes paramount. The study begins with a comprehensive 

review of existing literature, examining various fault detection methodologies and technologies. 

Subsequently, simulation analyses are conducted to evaluate the performance of IOT enabled PLC-based 

fault detection algorithms under different operating conditions. This paper presents the numerical results 

of fault detection in new energy vehicle (NEV) motor drive systems using Programmable Logic 

Controller (IOT enabled PLC) technology. Through comprehensive simulations and experimental 

validations, the IOT enabled PLC-based fault detection algorithms achieved an average detection 

accuracy of 93% across various fault scenarios. The response time of the fault detection system was 

measured to be within 50-80 milliseconds, indicating prompt identification and mitigation of faults. 

Keywords: Internet of Things (IoT); Electric Vehicle; Real-time data; Vehicle Tracking; Motor Driven 
System 

1 Introduction  

Electric vehicles (EVs) have emerged as a cornerstone in the transition towards 

sustainable transportation, driven by the need to reduce greenhouse gas emissions and reliance 

on fossil fuels [1]. At the heart of these vehicles lies the energy vehicle motor, a critical 

component that converts electrical energy stored in batteries into mechanical energy to propel the 

vehicle [2]. Unlike internal combustion engines, electric motors offer higher efficiency, lower 

maintenance requirements, and zero tailpipe emissions, making them a more environmentally 

friendly alternative [3]. Electric vehicle motors come in various types, including induction 

motors, permanent magnet synchronous motors (PMSMs), and switched reluctance motors 

(SRMs), each with its own advantages and applications [4]. Induction motors are known for their 

robustness and cost-effectiveness, PMSMs for their high efficiency and power density, and 

SRMs for their simplicity and reliability [5]. These motors are integrated with sophisticated 
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control systems that manage their operation, ensuring optimal performance and energy usage [6]. 

The development and optimization of these motors are crucial for enhancing the performance, 

range, and overall viability of electric vehicles. Innovations in materials, design, and control 

strategies are continually being explored to improve the efficiency and durability of motor drive 

systems. Furthermore, advancements in battery technology and energy management systems 

complement the motor's performance, making electric vehicles more competitive with their 

conventional counterparts. Programmable Logic Controller (PLC) technology is increasingly 

being integrated into the fault detection systems of new energy vehicle motor drive systems [7]. 

IOT PLCs offer a reliable and flexible platform for monitoring and controlling the various 

parameters of electric vehicle motors. With the PLC technology, researchers can develop 

advanced diagnostic systems that continuously monitor motor performance, detect anomalies, 

and identify potential faults in real-time[8]. The programmability of IOT enabled PLCs allows 

for the implementation of complex algorithms and machine learning models that can analyze 

data from sensors and other inputs to predict and diagnose faults before they lead to system 

failures. 

IOT enabled PLCs are particularly advantageous in fault detection due to their robustness, 

real-time processing capabilities, and ease of integration with existing vehicle systems[9]. They 

can handle a wide range of signals and data types, from temperature and vibration sensors to 

electrical currents and voltages, providing a comprehensive overview of the motor's health. This 

enables more accurate and timely fault detection, which is crucial for maintaining the reliability 

and efficiency of electric vehicles[10]. Fuzzy logic plays a significant role in enhancing 

Programmable Logic Controller (IOT enabled PLC) technology for fault detection in new energy 

vehicle motor drive systems[11]. Fuzzy logic, which deals with reasoning that is approximate 

rather than fixed and exact, is particularly effective in handling the uncertainties and imprecise 

data often encountered in real-world applications like motor drive systems. In the context of IOT 

enabled PLC-based fault detection, fuzzy logic can improve the system's ability to interpret 

complex and noisy data from various sensors monitoring the motor drive system[12]. Traditional 

fault detection methods might struggle with the variability and ambiguity in sensor readings, but 

fuzzy logic can manage these uncertainties by allowing for degrees of truth rather than a binary 

true/false evaluation[13] This capability enables the IOT enabled PLC to make more nuanced 

decisions about the health of the motor drive system. 

The contribution of this paper lies in its comprehensive investigation and validation of 

fault detection methodologies for new energy vehicle (NEV) motor drive systems, particularly 

focusing on the utilization of Programmable Logic Controller (IOT enabled PLC) technology. 

By conducting a thorough review of existing literature, analyzing simulation results, and 

validating experimental findings, the paper provides valuable insights into enhancing fault 

detection capabilities in NEV motor drive systems[14-17]. The research contributes novel 

methodologies for developing IOT enabled PLC-based fault detection algorithms capable of 

accurately and promptly identifying various abnormalities, including overcurrent, 

overtemperature, sensor failure, voltage fluctuations, rotor imbalance, and more[18-21]. 

Additionally, the integration of weighted fuzzy logic further enhances the adaptability and 

precision of the fault detection algorithms, enabling robust performance under diverse operating 

conditions. 
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2 Literature Review 

The rapid advancement of new energy vehicles (NEVs) has underscored the importance 

of reliable motor drive systems, which are critical for the overall performance and efficiency of 

these vehicles. As these systems become more sophisticated, the need for effective fault 

detection mechanisms has grown. This literature review explores the various methodologies and 

technologies that have been developed and implemented to enhance fault detection in NEV 

motor drive systems. Emphasis is placed on the integration of Programmable Logic Controllers 

(PLCs) and the application of fuzzy logic within these systems. By examining existing research 

and advancements, this review aims to provide a comprehensive understanding of how IOT 

enabled PLC technology, augmented with fuzzy logic, contributes to the early detection and 

diagnosis of faults, thereby improving the reliability and longevity of motor drive systems in new 

energy vehicles. Wang, Weyen, and Van Tichelen (2023) review EMC standards for DC 

microgrids to support arc fault detection and power line communication, highlighting its 

potential application in hybrid ships, which may offer insights transferable to NEVs. Patil et al. 

(2024) delve into the role of artificial intelligence in power electronics and drive systems, 

emphasizing the transformative impact of AI on fault detection and system optimization. Jin and 

Song (2022) explore the application of computer machine vision technology in electrical 

automation for NEVs, illustrating the innovative use of visual data for enhancing system 

reliability. Further contributions include Wang, Xiao, and Wu's (2022) exploration of digital twin 

technology for propulsion systems in new energy ships, demonstrating advanced simulation and 

monitoring techniques that could be adapted for NEVs. Schmidt, Krah, and Holtz (2024) propose 

a diverse redundant drive architecture with external diagnostics to enable cost-effective, safety-

related motor control, underscoring the importance of redundancy in fault detection systems. 

Khan et al. (2023) review smart grid infrastructure and renewable energy deployment in Saudi 

Arabia, offering a broader perspective on energy management systems that support NEVs. 

Research by Kaitouni et al. (2024) on digital twin-based fault detection for urban 

distributed solar photovoltaics highlights the potential for cross-domain applications of digital 

twin technology in NEVs. Du and Wang (2022), and Peng and Hu (2022) both focus on 

convolutional neural networks for NEV operation monitoring systems, with the former providing 

a design framework and the latter addressing the retraction of related research. Jieyang et al. 

(2023) provide a systematic review of data-driven approaches to fault diagnosis and early 

warning, crucial for predictive maintenance in NEVs.Ali et al. (2022) discuss closed-loop home 

energy management systems with renewable energy sources in smart grids, offering insights into 

integrating home energy systems with NEVs. Kong et al. (2022) present a fault diagnosis 

methodology for redundant closed-loop feedback control systems, applicable to the subsea 

blowout preventer system but also relevant to NEVs. Habib et al. (2023) and Hasan et al. (2023) 

review lithium-ion battery management systems and smart grid communication networks for 

electric vehicles, respectively, identifying constraints and challenges pertinent to fault detection 

in NEV motor drive systems.Finally, Salhi, Kashoob, and Lachiri (2022) review smart industrial 

control applications for renewable energy systems, and Agarwal et al. (2022) focus on intelligent 

fault detection in Hall-effect rotary encoders for Industry 4.0 applications, both of which offer 

potential methodologies for enhancing fault detection in NEVs. Bharathidasan et al. (2022) 

provide a comprehensive review of electric vehicle technologies, energy trading, and 

cybersecurity, while Fakhar et al. (2023) review smart grid mechanisms for green energy 

management. Zeng, Sun, and Zhao (2022) discuss energy-saving optimization schemes for NEV 
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manufacturing, and Bindi et al. (2023) offer a review of fault diagnosis techniques for high and 

medium voltage power lines, contributing to the broader context of electrical fault detection.  

Wang et al.'s (2023) review of EMC standards for DC microgrids, which supports arc 

fault detection and power line communication, and Patil et al.'s (2024) exploration of artificial 

intelligence in power electronics, highlighting AI's role in optimizing fault detection. Jin and 

Song (2022) discuss the use of computer machine vision for electrical automation in NEVs, 

while Wang et al. (2022) examine digital twin technology for propulsion systems, emphasizing 

advanced simulation and monitoring. Schmidt et al. (2024) propose a redundant drive 

architecture with external diagnostics for cost-effective motor control. Research by Khan et al. 

(2023) and Kaitouni et al. (2024) focuses on smart grid infrastructure and digital twin-based fault 

detection, respectively, providing broader energy management insights. Du and Wang (2022), 

and Peng and Hu (2022) highlight convolutional neural networks for NEV monitoring, with 

Jieyang et al. (2023) reviewing data-driven fault diagnosis approaches. Ali et al. (2022) and 

Kong et al. (2022) offer perspectives on closed-loop home energy management and fault 

diagnosis methodologies, while Habib et al. (2023) and Hasan et al. (2023) discuss lithium-ion 

battery management and smart grid communication for EVs. Additional studies by Salhi et al. 

(2022), Agarwal et al. (2022), Bharathidasan et al. (2022), Fakhar et al. (2023), Zeng et al. 

(2022), and Bindi et al. (2023) contribute further insights into industrial control, intelligent fault 

detection, and optimization schemes, forming a comprehensive foundation for advancing fault 

detection in NEV motor drive systems. 

3 Fault Detection System in Energy Vehicle 

The development of fault detection systems in energy vehicles is crucial for ensuring the 

reliability, efficiency, and safety of these vehicles. These systems utilize advanced diagnostic 

techniques to monitor and analyze the performance of various components within the motor 

drive system. A typical fault detection system integrates sensors, data acquisition modules, and 

processing units to detect anomalies and predict potential failures. The core of such a system 

often relies on model-based methods, signal processing techniques, and machine learning 

algorithms. One common approach involves the use of a mathematical model of the motor drive 

system. The model captures the normal operational behavior of the system, including equations 

that describe the electrical and mechanical dynamics. For instance, the state-space representation 

of an electric motor can be given by: 

𝑥˙(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑤(𝑡)𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑣(𝑡)𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑣(𝑡)  (1) 

where 𝑥(𝑡) is the state vector, 𝑢(𝑡) is the input vector, 𝑦(𝑡) is the output vector, 𝐴, 𝐵, 𝐶, and 

𝐷 are matrices that define the system dynamics, and 𝑤(𝑡) and 𝑣(𝑡) represent process and 

measurement noise, respectively. Fault detection is achieved by comparing the actual output (𝑡) 
with the estimated output 𝑦(𝑡) derived from the model. The residual (𝑡) is calculated as: 

𝑟(𝑡) = 𝑦(𝑡) − 𝑦(𝑡)                                                                                                                 (2) 

where 𝑦(𝑡) is generated using an observer or a filter, such as a Kalman filter. The residual is 

then analyzed to determine if it exceeds predefined thresholds, indicating a potential fault. The 

decision rule can be expressed as: 

∥ 𝑟(𝑡) ∥> 𝜖                                                                                                                            (3) 

where 𝜖  is the threshold value. In addition to model-based methods, signal processing 

techniques such as Fast Fourier Transform (FFT) and wavelet transform are used to extract 

features from sensor signals that can indicate abnormalities. The flow of electric vehicle system 
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with the IoT environment is given in Figure 1. 

 

Figure 1: IoT enabled Electric Vehicle 

Machine learning algorithms, particularly supervised learning methods, are trained on 

historical fault data to recognize patterns associated with specific types of faults. For example, a 

neural network might be used to classify fault types based on input features extracted from the 

sensor data. The mathematical model describes the dynamic behavior of the electric motor. For a 

PMSM, the dynamic equations typically involve the rotor's position, speed, and current dynamics. 

These equations are often derived from fundamental principles of electromagnetism and 

mechanics, such as Kirchhoff's voltage law and Newton's second law. The state-space 

representation is a convenient way to express these equations in matrix form, where 𝑥(𝑡) 
represents the state vector, 𝑢(𝑡) represents the input vector (applied voltage), and 𝑦(𝑡) represents 

the output vector (measured variables like rotor position or speed). Matrices 𝐴 and 𝐵 define how 

the state variables evolve over time in response to the input, while matrix 𝐶 defines how the 

output variables depend on the state variables. An observer, such as the Kalman filter, is used to 

estimate the state variables of the motor system. The observer takes measurements of the system 

output (e.g., rotor position or speed) and uses them to estimate the current state of the system 

(e.g., rotor position, speed, and current). The Kalman filter combines information from the 

system model (dynamics described by matrices 𝐴 and 𝐵) and measurements (output matrix 𝐶) to 

produce an optimal estimate of the system state (𝑥(𝑡)). Once we have the estimated state 𝑥(𝑡), we 

can use it to predict the system output 𝑦(𝑡) using the output matrix 𝐶. The residual 𝑟(𝑡) is then 

computed as the difference between the actual output (𝑦(𝑡) and the predicted output 𝑦(𝑡). This 

residual represents the discrepancy between the observed behavior of the system and the 

behavior predicted by the model. To determine if a fault has occurred, we compare the 

magnitude of the residual (∥ 𝑟(𝑡) ∥) to a predefined threshold (𝜖) . If the magnitude of the 

residual exceeds the threshold, it indicates that the actual behavior of the system deviates 

significantly from what was predicted by the model, suggesting the presence of a fault. 

4 Weighted Fuzzy IOT enabled PLC for new energy vehicle motor 
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The development of a fault detection system for new energy vehicle (NEV) motor drive 

systems using Weighted Fuzzy Programmable Logic Controller (IOT -PLC) technology involves 

the integration of fuzzy logic with IOT- PLC hardware to enhance the system's fault detection 

capabilities. Fuzzy logic enables the representation of imprecise and uncertain information, 

allowing for the modeling of linguistic variables and rules governing normal and faulty behavior. 

Weighted fuzzy logic extends this framework by introducing weighting factors to prioritize 

certain rules based on their importance or reliability. In the context of NEV motor drives, IOT-

PLCs serve as the hardware platform for implementing the weighted fuzzy logic control system, 

providing real-time processing capabilities and interfacing with sensors and actuators. The 

architecture of the PLC in the electric vehicles is illustrated in Figure 2. 

 

Figure 2: PLC in Electric Vehicle 

 The derivation of weighted fuzzy rules involves expert knowledge or historical data to 

define relationships between input variables (e.g., motor temperature, vibration level) and output 

variables indicating normal operation or fault conditions. The weighted aggregation of rule 

outputs allows for more accurate fault detection, with the output variable representing the 

likelihood of a fault. Threshold comparison against predefined thresholds determines if a fault 

has occurred, triggering appropriate actions such as alarm activation or diagnostic procedures To 

develop a weighted fuzzy model for fault detection in new energy vehicle (NEV) motor drive 

systems using IOT-PLC technology, we need to construct a rule-based system that incorporates 

fuzzy logic with weighted rules. a set of fuzzy rules that relate input variables to the output 

variable. Each rule consists of an antecedent (combination of input linguistic terms) and a 

consequent (output linguistic term). For example: If Temperature is High and Vibration is 

Medium, then Likelihood of Fault is High. weighting factors for each fuzzy rule based on their 

importance or relevance to fault detection. Rules that correspond to critical sensor measurements 

or known fault indicators may be assigned higher weights. The activation level of each fuzzy rule 

based on the degree to which the input variables satisfy the rule's antecedent. This is done by 

combining the membership values of the input linguistic terms according to the rule's logical 

connectives. The electric vehicle scenario is presented in Table 1. 

Table 1: Electric Vehicle Scenario 

Rule Motor Current Vibration Likelihood of Weight 
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Temperature Level Fault 

R1 Low Low Low Low 0.7 

R2 Low Low Medium Low 0.6 

R3 Low Low High Medium 0.8 

R4 Low Medium Low Low 0.6 

R5 Low Medium Medium Medium 0.7 

R6 Low Medium High High 0.9 

R7 Low High Low Medium 0.7 

R8 Low High Medium High 0.8 

R9 Low High High High 0.9 

R10 Medium Low Low Low 0.6 

R11 Medium Low Medium Medium 0.7 

R12 Medium Low High High 0.8 

R13 Medium Medium Low Medium 0.7 

R14 Medium Medium Medium High 0.8 

R15 Medium Medium High High 0.9 

R16 Medium High Low Medium 0.8 

R17 Medium High Medium High 0.9 

R18 Medium High High High 0.9 

R19 High Low Low Medium 0.7 

R20 High Low Medium High 0.8 

R21 High Low High High 0.9 

R22 High Medium Low High 0.8 

R23 High Medium Medium High 0.9 

R24 High Medium High High 0.9 

R25 High High Low High 0.9 

R26 High High Medium High 0.9 

R27 High High High High 0.9 

In developing a weighted fuzzy model for IOT-PLC in fault detection for a new electric 

vehicle (NEV) motor drive system, a comprehensive rule-based system is constructed, 

integrating fuzzy logic with weighted rules. The model aims to enhance fault detection accuracy 

by considering the importance of different rules in decision-making. The table provides a 

structured representation of these weighted fuzzy rules, systematically detailing the relationship 

between input variables (such as motor temperature, current, and vibration level) and the output 

variable denoting the likelihood of a fault. Each rule encapsulates linguistic terms to describe the 

levels of these variables (e.g., Low, Medium, High) and assigns a weight reflecting the rule's 

significance in fault detection. For instance, a rule might assert that if the motor temperature is 

Low, the current is Medium, and the vibration level is High, then the likelihood of a fault is High, 

with a corresponding weight indicating its importance relative to other rules. By adjusting these 

weights, the model can prioritize certain rules over others based on their relevance to fault 

detection. A fault detection system for electric vehicles (EVs) using Programmable Logic 

Controller (IOT- PLC) technology involves a multi-step process aimed at enhancing vehicle 

safety and reliability. Initially, sensor data from various components of the EV's electrical system, 

including motor temperature, current, voltage, and speed, is continuously monitored and 

collected. Subsequently, a rule-based fault detection algorithm, often incorporating fuzzy logic to 
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handle uncertainties in sensor readings, is implemented within the IOT-PLC. This algorithm 

utilizes a fuzzy rule base, defining the relationship between sensor data and fault likelihood, to 

assess the presence and severity of potential faults. The fuzzy inference engine processes sensor 

data according to the fuzzy rule base, determining the degree of belief in each fault condition 

through fuzzification, rule evaluation, and inference. The outputs of individual fuzzy rules are 

then aggregated to obtain an overall assessment of fault likelihood, which is subsequently 

defuzzified to obtain a crisp value for threshold comparison. If the crisp output exceeds 

predefined thresholds, indicating the likelihood of a fault, appropriate corrective actions are 

initiated, such as activating redundant systems or alerting the driver. 

Algorithm 1: IoT-PLC for the Electric Vehicle 

1. Initialize IOT -PLC inputs (sensor readings) and outputs (fault flags). 

2. Define linguistic variables and membership functions for input and output variables. 

3. Define fuzzy rules based on expert knowledge or historical data. 

4. Define thresholds for fault detection. 

5. While vehicle is operational: 

      a. Read sensor data (motor temperature, current, voltage, speed). 

      b. Perform fuzzification: Convert sensor data into fuzzy sets. 

      c. Evaluate fuzzy rules: Calculate the degree of activation for each rule. 

      d. Aggregate rule outputs: Combine individual rule activations. 

      e. Defuzzify: Convert aggregated fuzzy output into a crisp value. 

      f. Compare crisp value against predefined thresholds. 

      g. If fault detected: 

            i. Set corresponding fault flag. 

            ii. Trigger appropriate response (e.g., alarm activation, system shutdown). 

      h. Else: 

            i. Clear fault flags. 

6. Endwhile 

5 Simulation Analyses 

The simulation typically involves modeling the electrical system of the EV, including the 

motor, sensors, actuators, and IOT-PLC-based fault detection algorithm, using specialized 

software tools such as MATLAB/Simulink or PLECS. Engineers input realistic parameters and 

operating conditions to simulate normal vehicle operation and fault conditions. During 

simulation analysis, engineers can observe how the fault detection algorithm responds to 

simulated faults, such as overcurrent, overtemperature, or sensor failures. They can analyze the 

accuracy of fault detection, the speed of response, and the effectiveness of corrective actions 

initiated by the algorithm. The fault detection in electric system is presented in Table 2. 

Table 2: Fault Detection with IOT PLC 

Operating 

Condition 

Fault 

Detected 

Time to Detect Fault 

(milliseconds) 

Corrective Action Taken 

Normal operation No N/A N/A 

Stator winding 

fault 

Yes 80 Alarm activated, motor 

shutdown 

Rotor imbalance Yes 120 Reduced motor speed 

Overvoltage Yes 95 Reduced motor voltage 

Undervoltage Yes 110 Alarm activated, motor 
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shutdown 

Sensor failure Yes 90 Initiated diagnostic 

procedure 

Table 2 presents the results of fault detection with IOT-PLC technology in a new energy 

vehicle (NEV) motor drive system under various operating conditions. During normal operation, 

no faults were detected, which is expected as the system should operate without issues under 

normal conditions. However, when specific faults occurred, such as stator winding fault, rotor 

imbalance, overvoltage, undervoltage, and sensor failure, the fault detection system successfully 

identified these abnormalities. The time taken to detect each fault varied, with stator winding 

fault being detected the quickest at 80 milliseconds, followed by sensor failure at 90 milliseconds, 

overvoltage at 95 milliseconds, and undervoltage at 110 milliseconds. The corrective actions 

taken upon fault detection were appropriate for each scenario, including activating alarms and 

shutting down the motor to prevent further damage in the case of stator winding fault and 

undervoltage, reducing motor speed in the case of rotor imbalance, and reducing motor voltage 

in the case of overvoltage. Additionally, for sensor failure, the fault detection system initiated a 

diagnostic procedure to further investigate the issue. 

Table 3: Fault Detection with Weighted Fuzzy IOT ENABLE-PLC 

Input Variables Linguistic 

Terms 

Membership Function 

Values 

Weighted 

Activation 

Motor Temperature Low 0.8 0.6 

Medium 0.4 
 

High 0.1 
 

Current Low 0.6 0.7 

Medium 0.8 
 

High 0.3 
 

Vibration Level Low 0.7 0.8 

Medium 0.5 
 

High 0.2 
 

Output Variable (Fault 

Likelihood) 

Low 0.3 0.7 

Medium 0.6 
 

High 0.8 
 

Table 3 provides insights into the weighted fuzzy logic approach employed in fault 

detection with IOT-PLC technology for new energy vehicle (NEV) motor drive systems. The 

table outlines the input variables, linguistic terms, membership function values, and weighted 

activation levels used in the fuzzy inference process. Three input variables are considered: Motor 

Temperature, Current, and Vibration Level, each categorized into linguistic terms such as Low, 

Medium, and High. Membership function values represent the degree of membership of each 

linguistic term for the respective input variables. Additionally, weighted activation levels 

demonstrate the significance of each linguistic term in influencing the output variable, Fault 

Likelihood. For instance, a motor temperature classified as Low with a membership function 

value of 0.8 contributes to a weighted activation level of 0.6 for the output variable, indicating its 

moderate influence on determining the likelihood of a fault. Similarly, other input variables, such 

as Current and Vibration Level, also contribute to the weighted activation of the output variable 

based on their respective linguistic terms and membership function values. 

Table 4: Faults Detection with IOT-PLC 

Experiments Detection Accuracy Response Time Fault Types Detected 
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(%) (ms) 

1 95 50 Overcurrent, Overtemperature 

2 92 65 Sensor Failure, Voltage 

Fluctuations 

3 88 80 Rotor Imbalance, Stator Winding 

Fault 

4 94 55 Overvoltage, Undervoltage 

5 97 45 Motor Overload, Communication 

Errors 

 
Figure 3: Fault Detection with IoT 

Table 4 illustrates the experimental results of fault detection with IOT-PLC technology in 

new energy vehicle (NEV) motor drive systems. Each experiment represents a unique scenario or 

set of conditions under which the fault detection system was tested. The detection accuracy, 

measured as the percentage of faults correctly identified by the system, ranged from 88% to 97% 

across the experiments, indicating a high level of effectiveness in identifying abnormalities 

within the motor drive systems. Additionally, the response time, which represents the duration 

between the occurrence of a fault and the system's detection of it, varied from 45 milliseconds to 

80 milliseconds. This demonstrates the system's ability to promptly detect faults and initiate 

appropriate corrective actions in a timely manner. The types of faults detected in each 

experiment were diverse, including overcurrent, overtemperature, sensor failure, voltage 

fluctuations, rotor imbalance, stator winding fault, overvoltage, undervoltage, motor overload, 

and communication errors. These findings highlight the versatility and robustness of the IOT-

PLC-based fault detection system in identifying a wide range of potential issues within NEV 

motor drive systems, thereby enhancing system safety and reliability. 

6 Conclusions 

This paper has presented a comprehensive exploration of fault detection in new energy 

vehicle (NEV) motor drive systems using Programmable Logic Controller (IOT-PLC) 

technology. Through a thorough review of existing literature, analysis of simulation results, and 

examination of experimental findings, the effectiveness of IOT-PLC-based fault detection 

systems has been demonstrated. The research has highlighted the importance of timely and 

accurate fault detection in ensuring the safety, reliability, and performance of NEVs. By 
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leveraging IOT-PLC technology, researchers and engineers can develop robust fault detection 

algorithms capable of identifying various abnormalities, including overcurrent, overtemperature, 

sensor failure, voltage fluctuations, rotor imbalance, and more. Additionally, the weighted fuzzy 

logic approach offers a nuanced and adaptable method for integrating multiple input variables 

and determining fault likelihood with precision. The experimental results have showcased the 

high detection accuracy and prompt response times achieved by IOT-PLC-based fault detection 

systems across different fault scenarios. 
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