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Abstract: Lung X-ray images play a crucial role in the detection and diagnosis of various lung diseases, 

including pneumonia, tuberculosis, and lung cancer. These images provide a non-invasive method for 

visualizing lung structures, allowing radiologists and machine learning models to identify abnormalities 

such as nodules, masses, or fluid accumulation. With the advancement of deep learning techniques, lung 

X-ray images are now used in automated systems that can detect and classify diseases with high accuracy. 

By applying sophisticated algorithms like GE-U-Net-ODL, Gabor filters, and entropy-based feature 

extraction, these images are analyzed pixel by pixel to enhance feature representation and improve 

diagnostic precision. This paper presents a novel approach for lung disease detection and classification 

using the GE-U-Net-ODL model, which integrates advanced preprocessing techniques and deep learning 

architectures. The study leverages the NIH Chest X-ray dataset and employs a variety of feature extraction 

and selection methods, including Gabor filters, entropy-based techniques, and multi-scale inputs. A detailed 

comparative analysis of different model configurations demonstrates that the GE-U-Net-ODL model with 

Transfer Learning achieves the highest classification accuracy of 95.0%, alongside superior precision 

(93.5%), recall (94.0%), and F1-score (93.7%). Other configurations, such as those utilizing data 

augmentation and hybrid filters, also showed notable performance improvements. The research underscores 

the model's effectiveness in enhancing diagnostic accuracy for lung diseases while balancing training and 

inference times 

Keywords: Lung X-ray images; Deep learning; Feature extraction; Entropy; Gabor filters; Automated 
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1 Introduction  

 Lung disease detection and classification have become crucial in modern healthcare due to the 

increasing prevalence of respiratory illnesses like pneumonia, tuberculosis, lung cancer, and 

chronic obstructive pulmonary disease (COPD) [1]. Early and accurate diagnosis is vital for 

effective treatment, which has led to the development of advanced technologies such as deep 

learning and machine learning for automated detection and classification. These methods often 

involve analyzing medical imaging, such as chest X-rays or CT scans, to identify patterns 

indicative of disease. Techniques like Convolutional Neural Networks (CNNs), coupled with 

algorithms for feature extraction and classification, have shown high accuracy in differentiating 

between various lung conditions [2].  Lung disease detection and classification using chest X-rays 

have become pivotal in diagnosing respiratory conditions like pneumonia, tuberculosis, lung 

cancer, and chronic obstructive pulmonary disease (COPD). X-ray imaging, due to its accessibility 
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and efficiency, is widely used for identifying abnormalities in the lungs. Advanced machine 

learning and deep learning techniques, particularly Convolutional Neural Networks (CNNs), have 

been increasingly employed to automate the analysis of chest X-rays, enabling the detection and 

classification of various lung diseases [3]. These systems extract key features from X-ray images, 

such as lesions, nodules, or opacities, and classify them with high accuracy. By leveraging large 

datasets, AI models can differentiate between healthy and diseased lungs, improving diagnostic 

precision, reducing the reliance on subjective interpretation, and aiding radiologists in early 

detection, ultimately enhancing patient outcomes and speeding up the diagnostic process [4]. 

The artificial intelligence into lung disease detection with X-rays allows for rapid and 

consistent analysis of large volumes of medical images, which is crucial in high-demand healthcare 

environments [5]. These models can be trained to recognize subtle patterns that may be missed by 

the human eye, thereby increasing sensitivity and specificity in detecting diseases at their early 

stages. Additionally, AI-driven systems can assist in triaging patients by prioritizing cases that 

require immediate medical attention, which is particularly valuable in resource-constrained 

settings [6]. As these technologies evolve, they are also becoming more interpretable, offering 

visual explanations of the detected abnormalities, further enhancing clinician trust and decision-

making. The use of X-rays combined with machine learning not only improves diagnostic accuracy 

but also holds the potential to democratize healthcare by making high-quality lung disease 

detection more accessible in underserved regions [7]. Deep learning plays a transformative role in 

lung disease detection and classification by automating the analysis of complex medical images, 

particularly chest X-rays and CT scans. Convolutional Neural Networks (CNNs), a popular deep 

learning architecture, have proven highly effective in identifying and classifying lung diseases 

such as pneumonia, tuberculosis, lung cancer, and chronic obstructive pulmonary disease (COPD) 

[8]. These models excel at recognizing intricate patterns in medical images that may not be easily 

detectable by human experts, leading to enhanced diagnostic accuracy and speed. By learning from 

large datasets of labeled images, deep learning algorithms can distinguish between healthy lungs 

and various disease conditions, often outperforming traditional diagnostic methods [9]. 

Additionally, deep learning models are capable of continuous improvement as they are exposed to 

more data, making them adaptable to new or rare diseases [10]. 

In the context of lung disease detection, deep learning models can automatically learn to 

recognize disease indicators like lung opacities, nodules, masses, or other abnormalities without 

manual feature engineering, making the process more efficient and less reliant on domain expertise 

[11]. This is crucial in the detection of diseases like lung cancer, where early-stage nodules are 

small and often overlooked, or pneumonia, where subtle differences in opacity could indicate 

disease severity [12]. Moreover, deep learning systems are highly adaptable, capable of training 

on vast datasets that contain a variety of lung diseases, thus enhancing their ability to generalize 

to new or unseen cases. This is particularly beneficial in clinical settings where early detection and 

accurate classification are critical for patient outcomes [13]. Deep learning models have 

demonstrated high sensitivity and specificity, reducing the rate of false positives and false 

negatives compared to traditional diagnostic methods. For example, CNN-based models can 

achieve near-human or even superhuman performance in detecting diseases like tuberculosis and 

lung cancer, providing second-opinion diagnoses that complement the work of radiologists [14]. 

Another significant advantage of deep learning is its ability to handle complex multi-class 

classification tasks. In lung disease detection, this means not only identifying whether a lung 

condition is present but also classifying it into specific categories such as pneumonia, COPD, or 
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fibrosis. This level of precision is critical for ensuring appropriate treatment plans are implemented. 

Deep learning also aids in the development of explainable AI (XAI), where attention maps or heat 

maps generated by models can visually highlight the areas of the lung images that influenced the 

diagnosis [15]. This not only builds trust with clinicians but also provides valuable insights into 

the progression of the disease, enabling more personalized and informed treatment strategies. 

This paper contributes to the advancement of lung disease detection and classification 

through the introduction and evaluation of the GE-U-Net-ODL model. It integrates advanced 

preprocessing techniques, such as Gabor filters and entropy-based feature selection, with the U-

Net architecture, offering a robust framework for medical image analysis. A comprehensive 

evaluation of various configurations reveals that the model with Transfer Learning achieves the 

highest classification accuracy of 95.0%, demonstrating superior performance in precision, recall, 

and F1-score. The study also provides a detailed comparative analysis of different preprocessing 

and feature extraction methods, highlighting their impact on model efficiency and accuracy. A 

thorough comparative analysis shows that the GE-U-Net-ODL model with Transfer Learning 

achieves the highest classification accuracy of 95.0%, alongside a precision of 93.5%, recall of 

94.0%, and an F1-score of 93.7%. Additionally, configurations using data augmentation and 

hybrid filters achieve accuracies of 94.2% and 93.0%, respectively, highlighting their effectiveness. 

The study provides a detailed evaluation of various preprocessing methods, such as Gabor filters 

and entropy features, which significantly impact model performance, with training times ranging 

from 12 to 18 hours and inference times between 0.16 to 0.22 seconds per image. These 

contributions enhance diagnostic accuracy and efficiency, offering valuable insights for future 

advancements in medical image analysis and clinical applications. 

 

2 Related Works 

Lung disease detection and classification are critical for diagnosing and managing 

conditions such as pneumonia, tuberculosis, chronic obstructive pulmonary disease (COPD), and 

lung cancer. With the increasing prevalence of respiratory diseases, especially in the wake of 

global health challenges like COVID-19, the demand for accurate and timely diagnostic tools has 

surged. Traditional diagnostic methods, relying on manual interpretation of chest X-rays and CT 

scans, can be time-consuming and prone to human error. In recent years, deep learning has 

emerged as a powerful tool to automate and enhance the detection of lung diseases, offering faster, 

more accurate, and scalable solutions. Leveraging advanced models like Convolutional Neural 

Networks (CNNs), these AI-driven approaches can analyze complex medical images, classify 

diseases, and even detect subtle abnormalities that may elude human radiologists, thereby 

improving early diagnosis and patient outcomes. 

Pandian et al. (2022) explore the application of CNNs and GoogleNet for lung cancer 

detection, illustrating the power of CNN architectures in extracting critical features from medical 

images. Similarly, Kim et al. (2022) focus on multi-class lung disease classification using deep 

learning, proving that AI models can handle a variety of lung conditions simultaneously. Soni et 

al. (2022) introduce a hybrid CNN model, demonstrating how combining different machine 

learning techniques can enhance lung disease classification accuracy. A broader review by 

Zarandah et al. (2023) offers a systematic analysis of deep learning-based detection methods, 

reinforcing the growing body of evidence that machine learning outperforms traditional diagnostic 

approaches in respiratory disease identification. Shamrat et al. (2022, 2023) present models like 

LungNet22 and MobileNetV2, which are fine-tuned for multiclass classification, indicating the 

potential for specialized deep learning models in clinical settings. Other researchers, such as 
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Rajagopal et al. (2023), contribute novel approaches like the Deep Convolutional Spiking Neural 

Network optimized with an arithmetic optimization algorithm, while Ravi et al. (2023) propose a 

multichannel EfficientNet ensemble for detecting lung diseases from X-ray images, further 

improving diagnostic precision. Bhosale and Patnaik (2023) integrate COVID-19 classification 

with lung disease detection, underscoring the relevance of deep learning in pandemic-related 

healthcare challenges. 

Siddiqui et al. (2023) employ a novel deep belief network combined with Gabor filters to 

enhance the detection of lung cancer from CT images, demonstrating how feature extraction 

techniques can improve the model's sensitivity to disease-specific patterns. Nawaz et al. (2023) 

introduce the CXray-EffDet model, utilizing the EfficientDet architecture for chest disease 

classification, highlighting how state-of-the-art models designed for object detection tasks can be 

repurposed for medical imaging to achieve superior performance in detecting various lung 

conditions. In the realm of lung cancer detection, AR et al. (2023) apply a capsule network (LCD-

capsule network) for analyzing CT images, showing promise in capturing spatial hierarchies of 

features for more robust classification of lung cancer. Similarly, Humayun et al. (2022) leverage 

transfer learning with a CNN for lung carcinoma classification, showcasing the efficiency of pre-

trained models in medical image analysis, especially when data availability is limited. 

Xu et al. (2022) present ISANET, a model for non-small cell lung cancer classification that 

incorporates an attention mechanism, which allows the network to focus on the most relevant parts 

of the image, improving interpretability and diagnostic accuracy. The inclusion of attention 

mechanisms is a growing trend in medical imaging, as it enhances the model’s ability to localize 

and prioritize significant features. Lastly, Fraiwan et al. (2022) expand the application of deep 

learning beyond imaging, using a CNN-LSTM hybrid model to classify pulmonary diseases based 

on lung sounds. This work demonstrates the versatility of deep learning in handling multimodal 

data, not just visual images, but also audio data, further broadening the potential for AI-driven 

diagnostics in respiratory care. With the significant advancements in using deep learning for lung 

disease detection and classification, several limitations and research gaps remain. One of the 

primary challenges is the availability and quality of annotated medical datasets. Many deep 

learning models require vast amounts of labeled data to achieve high performance, but obtaining 

large, high-quality, and diverse datasets in the medical field can be difficult due to privacy 

concerns, limited access to patient data, and the need for expert annotation. This data scarcity can 

lead to models that are overfitted to specific datasets and fail to generalize well to new or diverse 

patient populations, reducing their clinical utility. 

Additionally, while deep learning models like Convolutional Neural Networks (CNNs) 

have demonstrated high accuracy, they often operate as "black boxes," providing little insight into 

how decisions are made. This lack of interpretability can be a barrier to their adoption in clinical 

settings, where trust and explainability are crucial. Although recent advancements like attention 

mechanisms and heatmaps aim to address this, more work is needed to create models that are both 

accurate and transparent.Another limitation is the focus on 2D imaging data, such as chest X-rays, 

while neglecting more comprehensive 3D imaging techniques like CT scans. While X-rays are 

widely available and cost-effective, they provide less detailed information than CT scans, 

potentially leading to missed diagnoses or less accurate classification in some cases. However, 

working with 3D imaging poses additional computational challenges, including increased 

processing time and hardware requirements. 
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3 Proposed Gabor Entropy U-net Ordered Deep Learning (GE- U-net-ODL) 

The proposed Gabor Entropy U-Net Ordered Deep Learning (GE-U-Net-ODL) is an 

advanced deep learning architecture designed to enhance the detection and classification of lung 

diseases. This method integrates Gabor filters, entropy-based feature extraction, and U-Net, a well-

known deep learning model for medical image segmentation, into a unified framework that excels 

at capturing both spatial and frequency domain information from lung X-ray or CT images. Gabor 

filters are used to capture edge details and texture features in lung images. 

𝐺(𝑥, 𝑦; 𝜆, 𝜃, 𝜓, 𝜎, 𝛾) = 𝑒𝑥𝑝(
−𝑥′2+𝛾2𝑦′2

2𝜎2 )𝑐𝑜𝑠(2𝜋
𝑥′

𝜆
+ 𝜓)                                                     (1) 

where 𝑥′ = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃  and 𝑦′ = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃 . Here, λ is the wavelength of the 

sinusoidal factor, θ is the orientation, ψ is the phase offset, σ is the standard deviation of the 

Gaussian envelope, and γ is the spatial aspect ratio. These filters help in detecting directional 

features and textures that are crucial for identifying lung abnormalities like nodules or opacities. 

Entropy is used to measure the randomness or complexity of pixel intensities in the lung images, 

which can highlight regions with abnormal tissue structures. The entropy H of an image is 

calculated as: 

𝐻 = − ∑ 𝑝𝑖  𝑙𝑜𝑔 𝑝𝑖
𝑛
𝑖=1                                                                                                             (2) 

where 𝑝𝑖 represents the probability of pixel intensity 𝑖, and 𝑛 is the total number of intensity 

levels in the image. High entropy regions often correspond to pathological areas, making entropy 

a useful metric for lung disease detection. U-Net is employed for accurate segmentation of lung 

regions, allowing the model to focus on the affected areas. The U-Net model consists of a 

contracting path (encoder) and an expansive path (decoder), with skip connections to preserve 

spatial information. The output of the U-Net provides a segmented lung region, which enhances 

the subsequent classification process. With ordered deep learning features are processed in a 

specific hierarchical order, ensuring that the most important features (e.g., those detected by Gabor 

filters and entropy) are given priority during classification. This ordered processing can be 

mathematically described as: 

𝑓𝑓𝑖𝑛𝑎𝑙(𝑥) = 𝑊𝑂𝐷𝐿 ⋅ [𝑓𝐺𝑎𝑏𝑜𝑟(𝑥), 𝑓𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑥), 𝑓𝑈 − 𝑁𝑒𝑡(𝑥)]                                     (3) 

where WODL represents the learned weights in the ordered deep learning framework, and 

fGabor(x), fEntropy(x), andfU-Net(x) are the features extracted by the Gabor filters, entropy, and 

U-Net, respectively. The input lung image 𝐼(𝑥, 𝑦) is first passed through the Gabor filter bank to 

generate a set of directional features: 

𝐼𝐺𝑎𝑏𝑜𝑟(𝑥, 𝑦) = 𝑖 = 1∑𝑁𝐺(𝑥, 𝑦; 𝜆𝑖, 𝜃𝑖, 𝜓𝑖, 𝜎𝑖, 𝛾𝑖) ∗ 𝐼(𝑥, 𝑦)                                               (4) 

where ∗*∗ denotes convolution, and NNN is the number of filters applied with different 

orientations and frequencies. The entropy of the filtered image is calculated for regions of interest 

(ROIs) as: 

𝐸𝑅𝑂𝐼 =  − ∑ 𝑝𝑘 𝑙𝑜𝑔 𝑝𝑘
𝐿
𝑘=1                                                                                                   (5) 

where 𝐿  is the number of intensity levels in the region, and 𝑝𝑘 is the probability of the 

intensity level 𝑘 occurring in the ROI. This entropy map highlights complex regions that may 

contain disease. The lung region is segmented using the U-Net model, which outputs a probability 

map 𝑆(𝑥, 𝑦) indicating the likelihood of each pixel belonging to the lung: 

𝑆(𝑥, 𝑦) = 𝑈𝑁𝑒𝑡(𝐼(𝑥, 𝑦))                                                                                                    (6) 

The final step is the classification of the segmented and processed lung region. The ordered 

features from Gabor filters, entropy, and U-Net are concatenated and fed into the deep learning 
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classifier. The classification decision is given by: 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝑊𝑂𝐷𝐿 ⋅ [𝐼𝐺𝑎𝑏𝑜𝑟(𝑥, 𝑦), 𝐸𝑅𝑂𝐼, 𝑆(𝑥, 𝑦)]                                                          (7) 

where �̂� is the predicted lung disease class, and WODLW  are the learned weights in the fully 

connected layers of the deep learning model. 

4 Gabor Entropy U-Net for feature extraction and selection 

The Gabor Entropy U-Net approach is a powerful method for feature extraction and selection 

in lung X-ray images, specifically tailored to detect and classify abnormalities like pneumonia, 

tuberculosis, and lung cancer. This method combines the strength of Gabor filters, entropy-based 

feature extraction, and the U-Net architecture for accurate segmentation, ensuring that both spatial 

and frequency domain features are captured for enhanced diagnostic precision. Gabor filters are 

employed to capture texture and edge features in lung X-rays, especially useful for identifying 

lung tissue patterns that may indicate disease. Gabor filters are known for their ability to capture 

spatial frequency, orientation, and scale, which are essential for detecting specific textures or 

structures in medical images. After applying Gabor filters, entropy is used to measure the 

randomness or complexity within regions of interest (ROIs) in the lung X-rays. High entropy 

typically signifies regions with irregular structures, such as areas affected by disease. U-Net, a 

convolutional neural network commonly used for medical image segmentation, is employed to 

segment the lung region accurately. The U-Net architecture consists of an encoder-decoder 

structure, where the encoder compresses the image into lower dimensions, and the decoder 

reconstructs the segmented regions. Once the Gabor and entropy features are extracted and the 

lung regions are segmented, the most relevant features are selected for classification. The Gabor 

feature maps 𝐺(𝑥, 𝑦), entropy values H, and U-Net segmentations 𝑆(𝑥, 𝑦) are concatenated and 

passed through a fully connected layer to select the most informative features: 

𝑓𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝐹𝐶([𝐺(𝑥, 𝑦), 𝐻, 𝑆(𝑥, 𝑦)])                                                                               (8) 

where fselected represents the selected features, and FC is a fully connected layer that learns 

the importance of different features. This process ensures that only the most critical features for 

lung disease classification are passed to the classifier. The Gabor Entropy U-Net framework 

provides a robust feature extraction and selection mechanism for lung X-ray images, combining 

spatial and frequency domain analysis through Gabor filters, entropy-based complexity 

measurement, and precise segmentation using U-Net. This hybrid approach ensures that both high-

level texture features and critical region-specific information are used to improve the accuracy of 

lung disease detection and classification. 

 

def GE_U-Net_ODL_Pipeline(dataset_path): 

    // Step 1: Data Preprocessing 

    X_train, X_val, X_test, y_train, y_val, y_test = preprocess_data(dataset_path) 

     

    // Step 2: Define Gabor filters 

    gabor_kernels = define_gabor_kernels() 

     

    // Step 3: Load U-Net model 

    unet_model = load_model('path_to_pretrained_unet.h5') 
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    // Step 4: Initialize Fully Connected layer for feature selection 

    fc_model = initialize_fc_layer() // Define or load a pre-trained FC layer 

     

    // Initialize containers for features 

    train_features = [] 

    val_features = [] 

    test_features = [] 

     

    // Step 5: Feature Extraction and Selection for Training Set 

    for img in X_train: 

        gabor_feats = apply_gabor_filters(img, gabor_kernels) 

        entropy = compute_entropy(img) 

        segmentation_mask = segment_with_unet(img, unet_model) 

        combined_features = concatenate_features(gabor_feats, entropy, 

segmentation_mask) 

        selected_features = select_features(combined_features, fc_model) 

        train_features.append(selected_features) 

     

    // Feature Extraction and Selection for Validation Set 

    for img in X_val: 

        gabor_feats = apply_gabor_filters(img, gabor_kernels) 

        entropy = compute_entropy(img) 

        segmentation_mask = segment_with_unet(img, unet_model) 

        combined_features = concatenate_features(gabor_feats, entropy, 

segmentation_mask) 

        selected_features = select_features(combined_features, fc_model) 

        val_features.append(selected_features) 

     

    // Feature Extraction and Selection for Test Set 

    for img in X_test: 

        gabor_feats = apply_gabor_filters(img, gabor_kernels) 

        entropy = compute_entropy(img) 

        segmentation_mask = segment_with_unet(img, unet_model) 

        combined_features = concatenate_features(gabor_feats, entropy, 

segmentation_mask) 

        selected_features = select_features(combined_features, fc_model) 

        test_features.append(selected_features) 
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    // Convert features to numpy arrays 

    train_features = np.array(train_features) 

    val_features = np.array(val_features) 

    test_features = np.array(test_features) 

     

    // Step 6: Classification 

    // Convert labels to categorical if necessary 

    y_train_cat = to_categorical(y_train, num_classes) 

    y_val_cat = to_categorical(y_val, num_classes) 

    y_test_cat = to_categorical(y_test, num_classes) 

     

    // Train and evaluate the classifier 

    test_accuracy = classify_features(train_features, y_train_cat, val_features, 

y_val_cat, test_features, y_test_cat, num_classes) 

     

    return test_accuracy 

5 Ordered Deep Learning with GE- U-net-ODL for lung X-ray images 

Ordered Deep Learning with the Gabor Entropy U-Net Ordered Deep Learning (GE-U-Net-

ODL) model offers an innovative approach to detecting and classifying lung diseases from chest 

X-ray images. This model leverages multiple deep learning techniques in a structured and 

systematic order, ensuring efficient feature extraction, selection, and classification. The process 

begins with the application of Gabor filters, which extract high-level texture features from the X-

ray images. These filters are designed to capture specific patterns such as edges and textures that 

are indicative of lung abnormalities, like tumors or infections. The extracted Gabor features are 

then subjected to an entropy calculation, which identifies regions of high information content and 

complexity within the image, highlighting the areas that are most likely to contain abnormalities. 

After feature extraction, the U-Net architecture is employed to segment the lungs and isolate the 

region of interest, removing irrelevant parts of the image. The U-Net ensures that only the lung 

areas are passed on to the next stage, reducing noise and focusing the analysis on the most critical 

parts of the image. The combination of Gabor features, entropy maps, and U-Net segmented lung 

areas forms a robust feature set that is then processed using Ordered Deep Learning techniques. 

These techniques prioritize features in a specific order, ensuring that the most relevant features are 

selected for classification. 

The model uses a fully connected layer to perform feature selection, followed by a 

classification layer that categorizes the X-ray images into various lung disease types, such as 

normal, pneumonia, or lung cancer. The ordered structure of deep learning within the GE-U-Net-

ODL model ensures that each step builds upon the previous one, providing an optimized and 

accurate method for lung disease detection and classification.  

The Gabor Entropy U-Net Ordered Deep Learning (GE-U-Net-ODL) model combines 

advanced image processing and deep learning techniques to detect and classify lung diseases in 

chest X-ray images. The process involves several key steps, each with its mathematical foundation. 
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Let I(x,y) represent the input chest X-ray image where  

 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝐼(𝑥,𝑦)

255
                                                                                                           (9) 

where I(x,y) is the original pixel intensity (in grayscale), and the normalized value 𝐼𝑛𝑜𝑟𝑚
(𝑥, 𝑦) is used for further processing.  The selected features 𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 are fed into an Ordered 

Deep Learning (ODL) classifier. ODL arranges the deep learning layers in a systematic order to 

ensure efficient feature processing. The classifier, which could be a Multi-Layer Perceptron (MLP) 

or a softmax layer, produces the final predicted class: 

�̂� = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 (𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)                                                                                                 (10) 

The final output of the GE-U-Net-ODL model is the classification label �̂� which identifies 

the lung disease based on the features extracted and selected through Gabor filters, entropy, and 

U-Net segmentation. The Ordered Deep Learning with Gabor Entropy U-Net (GE-U-Net-ODL) is 

a specialized model designed for detecting and classifying lung diseases using chest X-ray images. 

It integrates three powerful techniques: Gabor filters for texture-based feature extraction, entropy 

for measuring image complexity, and U-Net for segmenting lung regions. The process begins by 

applying Gabor filters, which capture texture patterns like edges and lung tissue structures. These 

filters are mathematically represented by sinusoidal waveforms modulated by Gaussian functions, 

which highlight specific features in different orientations and scales. The filtered outputs are 

combined to form a comprehensive texture feature map. Next, the model computes entropy to 

measure the complexity or information content within the image. This step helps to identify areas 

with high variability, which are more likely to indicate disease. Mathematically, entropy is derived 

from the probability distribution of pixel intensities, focusing on areas of the X-ray with 

irregularities or abnormalities. 

The U-Net architecture is then employed to segment the lung region from the X-ray, isolating 

the relevant parts of the image for analysis. This segmentation ensures that only the lung area is 

analyzed, removing irrelevant information from surrounding tissues. These features (Gabor, 

entropy, and lung segmentation) are combined and passed through a feature selection layer, which 

identifies the most important features for classification. Finally, the model applies an Ordered 

Deep Learning (ODL) classifier, systematically processing the selected features to predict the type 

of lung disease, such as pneumonia, lung cancer, or a healthy lung. The ordered structure ensures 

that each stage builds on the previous one, optimizing both accuracy and computational efficiency 

in detecting and classifying lung diseases. 

6 Results and Discussion 

This section presents an in-depth analysis of the outcomes obtained from the proposed Gabor 

Entropy U-Net Ordered Deep Learning (GE-U-Net-ODL) model for lung disease detection and 

classification using chest X-ray images. This section evaluates the model's performance in terms 

of classification accuracy, sensitivity, specificity, and other relevant metrics. A detailed 

comparison with existing methods highlights the advancements introduced by the GE-U-Net-ODL 

approach. Furthermore, the discussion provides insights into the strengths and limitations of the 

model, including its ability to detect various lung diseases, and explores potential areas for further 

improvement. 

Table 1: Simulation Setting 

Parameter Value/Setting 
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Dataset NIH Chest X-ray Dataset 

Image Size 256 x 256 pixels 

Preprocessing Min-Max Scaling (0-1) 

Gabor Filter Parameters λ=4\lambda = 4λ=4, θ=0,45,90,135∘\theta = 0, 45, 

90, 135^\circθ=0,45,90,135∘ 

Entropy Calculation Method Shannon Entropy 

U-Net Architecture Depth = 5, Filter Size = 3x3 

Activation Function ReLU (Rectified Linear Unit) 

Optimizer Adam Optimizer, lr=0.001\text{lr} = 

0.001lr=0.001 

Loss Function Categorical Cross-Entropy 

Batch Size 32 

Number of Epochs 100 

Train-Test Split 80% Train, 20% Test 

Validation Split 10% 

Learning Rate Scheduler ReduceLROnPlateau (factor=0.1, patience=5) 

Evaluation Metrics Accuracy, Sensitivity, Specificity, F1-score 

Hardware GPU (NVIDIA Tesla V100) 

Software Framework TensorFlow/Keras 

In Table 1 Simulation Setting provides a detailed overview of the parameters and settings 

used for the simulation in the study of lung disease detection and classification using X-ray images. 

The dataset utilized is the NIH Chest X-ray Dataset, which includes a diverse collection of chest 

X-ray images for analysis. Each image is standardized to a resolution of 256 x 256 pixels. For 

preprocessing, Min-Max Scaling is applied to normalize pixel values to a range between 0 and 1, 

enhancing the model's efficiency. Gabor filters are employed with parameters set to a wavelength 

(λ) of 4 and orientations (θ) of 0°, 45°, 90°, and 135°, aiding in capturing various texture patterns 

and features in the images. Entropy features are computed using Shannon Entropy, which 

quantifies the amount of information or uncertainty in the image data. The U-Net architecture, 

integral to the model, has a depth of 5 with a filter size of 3x3, providing a robust framework for 

image segmentation and feature extraction. The activation function used is ReLU (Rectified Linear 

Unit), known for its effectiveness in training deep neural networks. The Adam optimizer, with a 

learning rate (lr) of 0.001, is utilized for model optimization, and the loss function employed is 

Categorical Cross-Entropy to handle multi-class classification tasks. Training is conducted with a 

batch size of 32 and spans 100 epochs. The dataset is divided into 80% for training and 20% for 

testing, with an additional 10% of the training data set aside for validation. The learning rate is 

dynamically adjusted using the ReduceLROnPlateau scheduler, which decreases the learning rate 

by a factor of 0.1 when the model's performance plateaus, with a patience of 5 epochs. Performance 

is evaluated based on Accuracy, Sensitivity, Specificity, and F1-score, providing a comprehensive 

assessment of the model's effectiveness. The simulation is run on a GPU (NVIDIA Tesla V100) 

to leverage high computational power, and the TensorFlow/Keras framework is used for model 

development and training, ensuring robust and efficient implementation. 
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Figure 1: Dataset 

Table 2: Feature Extraction with GE-U-Net-ODL 

Feature 

Extraction 

Technique 

Feature 

Dimension 

Extraction Time 

(seconds/image) 

Classification 

Accuracy (%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

Raw Pixel 

Intensity 

256x256 

(65536 

features) 

0.15 85.4 82.3 81.9 82.1 

Gabor Filter 64x64 

(4096 

features) 

0.12 90.2 87.6 88.4 88.0 

Histogram of 

Oriented 

Gradients 

(HOG) 

128x128 

(16384 

features) 

0.18 88.9 85.4 86.2 85.8 

Local Binary 

Patterns 

(LBP) 

128x128 

(16384 

features) 

0.16 89.7 86.3 87.1 86.7 

Entropy-

Based 

Features 

128x128 

(16384 

features) 

0.14 90.5 88.0 87.8 87.9 

Principal 

Component 

Analysis 

(PCA) 

50x50 

(2500 

features) 

0.13 87.6 84.8 83.9 84.3 

Independent 

Component 

Analysis 

50x50 

(2500 

features) 

0.14 88.2 85.4 84.7 85.0 
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(ICA) 

Wavelet 

Transform 

64x64 

(4096 

features) 

0.17 89.1 86.2 85.8 86.0 

Deep 

Features 

(CNN-based) 

256x256 

(2048 

features) 

0.20 93.0 91.2 92.0 91.6 

Multi-scale 

Features 

256x256 

(4096 

features) 

0.22 94.2 92.5 93.2 92.8 

 

Figure 2: Feature Extraction Techniques: Time and Performance Metrics 

Table 2 Feature Extraction with GE-U-Net-ODL provides a comparative analysis of various 

feature extraction techniques applied to lung X-ray images using the GE-U-Net-ODL model. The 

table illustrates how different methods impact feature dimensions, extraction times, and key 

performance metrics such as classification accuracy, precision, recall, and F1-score. The Raw 

Pixel Intensity method, which retains the original feature dimension of 256x256 (65536 features), 

demonstrates a modest performance with a classification accuracy of 85.4% and an F1-score of 

82.1%, despite having a relatively fast extraction time of 0.15 seconds per image. In contrast, 

Gabor Filter reduces the feature dimension to 64x64 (4096 features) and achieves improved results 

with a classification accuracy of 90.2% and an F1-score of 88.0%, indicating its effectiveness in 

capturing texture patterns, with an extraction time of 0.12 seconds. Histogram of Oriented 

Gradients (HOG) and Local Binary Patterns (LBP), both with a dimension of 128x128 (16384 

features), show enhanced performance over Raw Pixel Intensity. HOG, with a longer extraction 

time of 0.18 seconds, provides an accuracy of 88.9% and an F1-score of 85.8%. LBP, with an 
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extraction time of 0.16 seconds, achieves slightly higher accuracy at 89.7% and an F1-score of 

86.7%, demonstrating its robustness in texture characterization. Entropy-Based Features, which 

also have a dimension of 128x128 (16384 features) and an extraction time of 0.14 seconds, deliver 

the highest classification accuracy of 90.5% and an F1-score of 87.9%, underscoring their 

effectiveness in quantifying the information content of images. Principal Component Analysis 

(PCA) and Independent Component Analysis (ICA), with reduced feature dimensions of 50x50 

(2500 features), offer comparable performance. PCA, with an extraction time of 0.13 seconds, 

yields an accuracy of 87.6% and an F1-score of 84.3%. ICA, with a slightly longer extraction time 

of 0.14 seconds, achieves an accuracy of 88.2% and an F1-score of 85.0%. 

Wavelet Transform results in a feature dimension of 64x64 (4096 features) and an extraction 

time of 0.17 seconds, providing an accuracy of 89.1% and an F1-score of 86.0%, reflecting its 

utility in capturing frequency-based features. Deep Features (CNN-based), with a high feature 

dimension of 256x256 (2048 features) and an extraction time of 0.20 seconds, achieve a 

classification accuracy of 93.0% and an F1-score of 91.6%, showcasing the strength of deep 

learning models in feature extraction. Finally, Multi-scale Features, with a dimension of 256x256 

(4096 features) and a longer extraction time of 0.22 seconds, provide the highest classification 

accuracy of 94.2% and an F1-score of 92.8%, highlighting their comprehensive approach in 

capturing features at multiple scales. This analysis demonstrates that advanced feature extraction 

methods, particularly those integrating deep learning and multi-scale techniques, significantly 

enhance performance metrics, contributing to more effective lung disease detection and 

classification. 

Table 3: Feature Selection with GE-U-Net-ODL 

Entropy Feature 

Selection Method 

Feature 

Dimension 

Extraction Time 

(seconds/image) 

Selection Time 

(seconds/image) 

Basic Entropy Features 128x128 (16384 

features) 

0.14 0.10 

Entropy with Principal 

Component Analysis 

(PCA) 

50x50 (2500 

features) 

0.12 0.06 

Entropy with Recursive 

Feature Elimination 

(RFE) 

128x128 (16384 

features) 

0.15 0.12 

Entropy with Mutual 

Information 

50x50 (2500 

features) 

0.13 0.07 

Entropy with Feature 

Aggregation 

64x64 (4096 

features) 

0.16 0.09 

Entropy with Hybrid 

Feature Selection 

128x128 (16384 

features) 

0.14 0.11 

Entropy with Deep 

Feature Fusion 

256x256 (2048 

features) 

0.18 0.14 
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Figure 3: Entropy Feature Selection Methods: Time and Feature Dimension 

In table 3 Feature Selection with GE-U-Net-ODL provides a comparative analysis of different 

entropy-based feature selection methods applied to lung X-ray images using the GE-U-Net-ODL 

model. The table details the impact of various selection techniques on feature dimensions, 

extraction times, and selection times. Basic Entropy Features yield a high feature dimension of 

128x128 (16384 features) with an extraction time of 0.14 seconds per image and a selection time 

of 0.10 seconds. This method provides a balance between feature richness and computational 

efficiency. Entropy with Principal Component Analysis (PCA) reduces the feature dimension to 

50x50 (2500 features), resulting in a shorter extraction time of 0.12 seconds and an even quicker 

selection time of 0.06 seconds. This method is effective in reducing dimensionality while 

maintaining computational efficiency. 

Entropy with Recursive Feature Elimination (RFE) maintains a high feature dimension of 

128x128 (16384 features), with an extraction time of 0.15 seconds and a selection time of 0.12 

seconds. This method is slightly more time-consuming but ensures thorough feature selection by 

eliminating less important features recursively. Entropy with Mutual Information also reduces the 

feature dimension to 50x50 (2500 features), with an extraction time of 0.13 seconds and a selection 

time of 0.07 seconds. This method offers a good trade-off between extraction and selection times 

while capturing relevant features based on mutual information. Entropy with Feature Aggregation 

produces a feature dimension of 64x64 (4096 features), with an extraction time of 0.16 seconds 

and a selection time of 0.09 seconds. This method provides a moderate dimensionality reduction 

with reasonable processing times. Entropy with Hybrid Feature Selection retains a feature 

dimension of 128x128 (16384 features), with an extraction time of 0.14 seconds and a selection 

time of 0.11 seconds. This approach combines multiple selection techniques to balance feature 

richness and selection efficiency. Entropy with Deep Feature Fusion results in a high feature 

dimension of 256x256 (2048 features) and has the longest extraction time of 0.18 seconds and a 

selection time of 0.14 seconds. This method leverages deep learning for feature extraction and 

fusion, providing comprehensive feature sets but at a higher computational cost. 
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In table 4 comparative Analysis of Classification with GE-U-Net-ODL provides an in-depth 

evaluation of various configurations applied to the GE-U-Net-ODL model for lung X-ray image 

classification. The table compares different settings based on accuracy, precision, recall, F1-score, 

training time, and inference time. The Base GE-U-Net configuration serves as a baseline, 

achieving an accuracy of 89.5% with a precision of 87.3%, recall of 85.8%, and an F1-score of 

86.5%. It has a training time of 12 hours and an inference time of 0.22 seconds per image. GE-U-

Net with CLAHE improves performance slightly with an accuracy of 91.1%, precision of 89.4%, 

recall of 88.0%, and an F1-score of 88.7%. The training time increases to 13 hours, while the 

inference time decreases to 0.20 seconds per image, indicating a benefit from Contrast Limited 

Adaptive Histogram Equalization (CLAHE) in image preprocessing. GE-U-Net with Gabor Filter 

further enhances accuracy to 92.6% and improves precision to 90.2% and recall to 91.0%, with an 

F1-score of 90.6%. This configuration requires 14 hours of training and has an inference time of 

0.19 seconds per image, demonstrating the effectiveness of Gabor filters in capturing texture 

features. GE-U-Net with Entropy offers an accuracy of 90.7%, with a precision of 88.1% and recall 

of 87.9%, and an F1-score of 88.0%. This configuration has a training time of 13 hours and an 

inference time of 0.21 seconds per image, showing good performance with entropy-based feature 

selection. 

Table 4: Comparative Analysis of Classification with GE-U-Net-ODL 

Configuration Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

Training 

Time 

(hours) 

Inference Time 

(seconds/image) 

Base GE-U-Net 89.5 87.3 85.8 86.5 12 0.22 

GE-U-Net with 

CLAHE 

91.1 89.4 88.0 88.7 13 0.20 

GE-U-Net with Gabor 

Filter 

92.6 90.2 91.0 90.6 14 0.19 

GE-U-Net with 

Entropy 

90.7 88.1 87.9 88.0 13 0.21 

GE-U-Net with 

Gaussian Blur 

87.8 85.0 84.6 84.8 12 0.22 

GE-U-Net with 

Hybrid Filters 

93.0 91.0 92.0 91.5 15 0.18 

GE-U-Net with Data 

Augmentation 

94.2 92.1 93.0 92.5 16 0.17 

GE-U-Net with 

Transfer Learning 

95.0 93.5 94.0 93.7 18 0.16 

GE-U-Net with Multi-

scale Inputs 

94.5 92.8 93.5 93.1 17 0.17 

GE-U-Net with Batch  

Normalization 

93.8 91.9 92.3 92.1 16 0.18 
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Figure 4: Performance metrics 

GE-U-Net with Gaussian Blur achieves an accuracy of 87.8%, with precision and recall 

values of 85.0% and 84.6%, respectively, and an F1-score of 84.8%. It has a training time of 12 

hours and an inference time of 0.22 seconds per image, indicating that Gaussian blur might not be 

as effective as other techniques. GE-U-Net with Hybrid Filters provides the highest performance 

with an accuracy of 93.0%, precision of 91.0%, recall of 92.0%, and an F1-score of 91.5%. This 

setting requires 15 hours of training and has an inference time of 0.18 seconds per image, reflecting 

the benefits of combining multiple filter techniques. GE-U-Net with Data Augmentation shows a 

significant improvement with an accuracy of 94.2%, precision of 92.1%, recall of 93.0%, and an 

F1-score of 92.5%. This configuration has the longest training time of 16 hours but the shortest 

inference time of 0.17 seconds per image, highlighting the advantages of data augmentation in 

enhancing model performance. GE-U-Net with Transfer Learning achieves the highest accuracy 

of 95.0% with a precision of 93.5%, recall of 94.0%, and an F1-score of 93.7%. It requires 18 

hours of training and an inference time of 0.16 seconds per image, demonstrating the effectiveness 

of leveraging pre-trained models for improved results. GE-U-Net with Multi-scale Inputs also 

shows strong performance with an accuracy of 94.5%, precision of 92.8%, recall of 93.5%, and an 

F1-score of 93.1%. This setting has a training time of 17 hours and an inference time of 0.17 
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seconds per image, reflecting the benefit of incorporating multi-scale inputs. GE-U-Net with Batch 

Normalization achieves an accuracy of 93.8%, precision of 91.9%, recall of 92.3%, and an F1-

score of 92.1%. This configuration has a training time of 16 hours and an inference time of 0.18 

seconds per image, indicating that batch normalization helps in stabilizing the learning process. 

7 Conclusion 

This paper demonstrates the effectiveness of the GE-U-Net-ODL model for the detection and 

classification of lung diseases from X-ray images. Through a comprehensive evaluation, various 

configurations of the model were assessed to optimize performance metrics. Notably, the GE-U-

Net with Transfer Learning achieved the highest classification accuracy of 95.0%, with a precision 

of 93.5%, recall of 94.0%, and an F1-score of 93.7%, although it required the longest training time 

of 18 hours. In comparison, the GE-U-Net with Data Augmentation also performed exceptionally 

well, attaining an accuracy of 94.2%, precision of 92.1%, recall of 93.0%, and an F1-score of 

92.5%, with a shorter training time of 16 hours. The use of multi-scale inputs and hybrid filters 

further demonstrated strong results with accuracies of 94.5% and 93.0%, respectively. These 

findings highlight the model's capacity to enhance diagnostic accuracy while balancing 

computational efficiency. The integration of advanced preprocessing techniques and feature 

selection methods, such as Gabor filters and entropy-based features, significantly contributed to 

improved performance, showcasing the model's potential in advancing lung disease diagnosis. 

Future work should focus on optimizing these configurations further and exploring additional 

preprocessing techniques to achieve even higher performance and efficiency in clinical settings. 
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