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Abstract: PLA (Polylactic Acid) is well known for its biodegradable properties and ease of use; however, 

a careful tuning of parameters such as infill density, layer height, feed rate, build orientation, and nozzle 

temperature is crucial to achieve the optimum strength and durability of the sample produced. While it 

has its own benefits, a low-cost FDM 3D printer often comes with limitations that affect the mechanical 

performance of printed parts, including calibration issues such as improper bed levelling, misaligned axes, 

and inconsistent extrusion, decreased temperature stability, and poorer build quality. To overcome these 

factors, a Design of Experiments (DoE) was applied using Response Surface Methodology (RSM). A 

total of 32 experiments were conducted to evaluate the influence of these parameters on tensile and 

flexural strength. In addition, a hybrid optimization technique combining Artificial Neural Network 

(ANN) and Particle Swarm Optimization (PSO) was applied. ANN determined strength predictions, 

whereas PSO was employed to yield the best parameter setups. The maximum tensile strength and 

flexural strength achieved 34.48 MPa and 71.07 MPa, respectively, indicating considerable enhancements 

in the mechanical traits of PLA prints. This study shows that with proper process parameter optimization, 

the performance of PLA can be increased even using low-cost printers. 
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1.Introduction 

Additive Manufacturing (AM), commonly known as 3D printing has transformed 

manufacturing by using layer-by-layer fabrication of complex design while minimize waste 

output and reduced post-processing [1]. Among various AM techniques, Fused Filament 

Fabrication (FFF), is widely adopted method due to its affordability and ease of use [2]. This 

method involves extruding thermoplastic filaments, such as PLA, ABS, PETG, HIPS, TPU, 

PEEK, and nylon to create parts [3]. Among these, PLA stands out as a most popular material 

because it offers affordability alongside ease of use and it is biodegradable which makes it ideal 

for use in education, medical devices, consumer products, and industrial parts [4]. While FFF 

provides superior outcomes using expensive and industrial-grade machines but low-cost 3D 

printers struggle to deliver consistent mechanical performance and product quality. Industrial-

grade FDM printers produce optimized prints with superior mechanical strength and finish yet 

low-cost printers suffer from calibration problems and inconsistent extrusion and temperature 

instability and insufficient layer adhesion [5]. Printed parts exhibit anisotropic behaviour due to 

process parameter dependencies which affect mechanical strengths including tensile and flexural 

strength [6-9]. Identifying and optimizing these parameters is essential to enhancing the quality 

of parts fabricated using low-cost 3D printer [10]. For example, Chacón et al. [11] highlighted 

that layer height, built orientation, and print speed significantly impact tensile and flexural 

strengths of PLA parts. It has been found that flat and on-edge orientations improve mechanical 

performance due to better inter-layer bonding compared to upright orientations. Nidagundi et 
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al.[12] Used Taguchi’s L9 orthogonal array and ANOVA to optimize FDM parameters which 

resulted in improved tensile strength and dimensional accuracy. Traditional methods like 

Taguchi and ANOVA work well for multi-objective problems yet struggle to handle the complex 

nonlinear interactions between process parameters [13]. The optimization of FDM process 

parameters has been studied through several experimental and statistical design approaches 

which include Full Factorial Design and Taguchi's method along with RSM [14-16]. Full 

Factorial Design executes numerous experimental tests to analyse all factor combinations at 

different levels while delivering complete analytical results [17]. Taguchi's method achieves 

simplified experimentation through orthogonal arrays that minimize experimental runs yet 

maintain parameter to output relationships [18]. RSM brings together experimental design with 

statistical modelling to study variable relationships and outcomes which provides a practical 

method for parameter optimization. [19]. To further improve process parameter optimization, 

advanced machine learning techniques such as ANN, Genetic Algorithms (GA), and PSO 

become popular [20-22]. These techniques are particularly useful for solving complex, multi-

objective optimization challenges and identifying nonlinear relationships between variables. 

ANN is widely used for predictive modelling, while GA and PSO are recognized as effective 

metaheuristic optimization tools [23]. The combination of ANN-PSO approaches uses ANN 

predictive accuracy and PSO efficient search abilities to optimize mechanical properties in FFF 

processes effectively. 

The novelty of the current work addresses challenges associated with low-cost FFF 3D 

printers because these machines have problems in delivering consistent mechanical performance 

and surface quality. By employing a hybrid ANN-PSO approach, this study aims to optimize the 

tensile and flexural strengths of FFF process parameters such as infill density, print speed, built 

orientation, layer height and nozzle temperature to overcome the inherent limitations of low-cost 

printers.  

2.Research Methodology 

2.1 Experimentation 

This study focused on optimizing the tensile and flexural strengths of PLA components 

manufactured using FFF technology. The 3D models for tensile and flexural specimens were 

designed using Autodesk Fusion 360 and exported as STL files, as shown in figure 1c and 1d. 

The slicing was performed using Ultimaker Cura software to adjust process parameters and 

generate G-code for the fabrication process. The test specimens followed ASTM standards while 

tensile specimens used ASTM D638 Type 1 (figure 1a) and flexural specimens used ASTM 

D790 standards (figure 1b) [24, 25].  

  

  

a. 
b. 

c. 
d. 
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Figure 1: Tensile and Flexural Specimens: (a) ASTM D638 tensile dimensions, (b) ASTM 

D790 flexural dimensions, (c) 3D tensile model, (d) 3D flexural model. 

Specimens were printed using a CADX Arya Pro 3D printer with Black PLA filament. 

Samples were produced with different process parameters determined by the design of 

experiments. Mechanical testing was carried out using a Universal Testing Machine (UTM) with 

a 50 KN capacity. The UTM adheres to ISO 9001-2015 standards, ensuring precise and reliable 

measurements of tensile and flexural strength. 

2.2 Response surface Methodology  

RSM is a statistical approach designed to minimize the number of experiments needed to 

analyse multiple variables and their interactions, making it particularly suited for optimizing 

complex processes like 3D printing [26]. In the current work, RSM employing a Central 

Composite Design (CCD) was applied to study the effects of five input parameters on the tensile 

and flexural strengths of PLA parts (Table 1). The tensile and flexural specimens are shown in 

Figures 2a and 2b, and the experimental results are summarized in Table 2. The CCD design 

consisted 32 experiments with 16 cube points, 10 axial points, and 6 centre points, using an alpha 

(α) value of ±2. This method significantly reduced the number of experiment while providing 

robust data for predictive modelling, enabling the optimization of FDM process parameters to 

enhance mechanical performance.  

Table 1: highlights the low and high values for the input process parameter 

S. No. Input process parameter Low High 

1 Build orientation (degree) 0 90 

2 Print Speed (mm/sec) 40 50 

3 Infill density (%) 40 80 

4 Temperature (0C) 210 230 

5 Layer thickness (mm) 0.2 0.25 
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2.3 Hybrid ANN and PSO 

A hybrid ANN and PSO approach optimizes 3D printing process parameters to achieve 

maximum tensile and flexural strengths. The input process parameters considered as infill 

density, build orientation, nozzle temperature, layer height, and print speed, which are known to 

significantly influence the mechanical properties of printed parts as suggested from literature 

review. The output parameters are tensile and flexural strengths, which represent the critical 

objectives of the optimization process. Experimental observations organized in a matrix structure 

showed individual samples as rows and input and output variables as columns. Data 

normalization to a [0, 1] range before training improved both the ANN's efficiency and accuracy. 

The ANN model included one hidden layer with 10 neurons which trained through the 

Levenberg-Marquardt backpropagation algorithm. To prevent overfitting and maintain model 

robustness, the data was split into three subsets: 70% for training, 15% for validation, and 15% 

for testing 

Table 2: Experimental Matrix of Input process Parameters and Output Strengths 

S NO Build 

orientation 

(Degree) 

Print 

Speed 

(mm/s) 

 

Infill 

density 

(%) 

Temperature 

(0C) 

Layer 

height 

(mm) 

Tensile 

strength 

(Mpa) 

Flexural 

strength 

(Mpa) 

1 90 50 40 210 0.20 20.98 56.48 

2 0 60 40 230 0.26 22.06 54.75 

3 135 55 60 220 0.23 24.86 58.75 

4 0 50 80 210 0.20 29.88 63.90 

 
 

 

Figure 2(a): Tensile Test specimens Figure 2(b) Flexural Test specimens 
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5 90 60 40 210 0.26 20.17 55.17 

6 45 55 100 220 0.23 32.45 65.86 

7 90 60 80 230 0.26 26.85 60.55 

8 45 55 60 200 0.23 22.75 57.85 

9 90 50 40 230 0.26 20.28 55.17 

10 0 50 40 230 0.20 24.98 57.74 

11 45 55 60 220 0.23 25.86 59.75 

12 45 65 60 220 0.23 25.86 59.76 

13 45 55 60 220 0.23 26.94 59.86 

14 90 50 80 210 0.26 26.75 61.73 

15 45 55 60 220 0.23 23.86 57.65 

16 0 50 40 210 0.26 21.23 55.90 

17 45 45 60 220 0.23 25.86 59.75 

18 45 55 20 220 0.23 17.45 51.73 

19 90 60 40 230 0.20 20.56 56.74 

20 90 60 80 210 0.20 27.98 62.84 

21 90 50 80 230 0.20 27.07 60.76 

22 -45 55 60 220 0.23 25.75 58.77 

23 0 50 80 230 0.26 28.85 62.90 

24 45 55 60 220 0.23 23.76 57.76 

25 0 60 80 230 0.20 30.21 63.98 

26 45 55 60 220 0.23 22.86 56.86 

27 0 60 80 210 0.26 28.54 61.89 

28 45 55 60 240 0.23 23.86 58.86 

29 45 55 60 220 0.23 24.86 58.87 

30 45 55 60 220 0.29 22.01 57.65 

31 45 55 60 220 0.17 28.85 60.65 

32 0 60 40 210 0.20 23.45 58.74 

The trained ANN underwent validation through experimental output comparison which 

resulted in performance evaluation using mean squared error (MSE). The trained ANN 

functioned as a surrogate model to predict tensile and flexural strengths from specified input 

parameters. 

PSO is an evolutionary algorithm that mimics bird and fish group social behaviours to 

discover optimal solutions through multidimensional particle movement simulation [27]. Each 

particle represents a potential solution, and its movement is influenced by two key factors the 

particles own best position and the global best position discovered by the swarm. The velocity 

and position of particles are updated iteratively using equation 1 and 2, which balance 

exploration and exploitation. The velocity update process combines particle inertia with 
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cognitive (c1) personal best knowledge and social (c2) global best knowledge through random 

numbers (r1 and r2) to introduce stochasticity. There are two main variations of the PSO 

algorithm: standard PSO and improved PSO. Standard PSO maintains a static inertia weight that 

constrains its dynamic adaptation throughout the search process. Improved PSO introduces linear 

inertia weight reduction, which starts with a higher inertia to allow broader exploration and 

gradually decreases it to focus on exploitation. This adjustment improves convergence and 

ensures efficient optimization [28]. 

The PSO algorithm during optimization identified optimal parameter combinations which 

maximized tensile strength and flexural strength simultaneously. The PSO algorithm started with 

30 particles distributed across defined parameter ranges where cognitive and social coefficients 

(c1 and c2) were set to 2. The optimization framework included a multi-objective definition 

where the fitness function used ANN-predicted tensile and flexural strengths in negative form to 

achieve maximization [29]. The algorithm performed an iterative process of position and 

velocity updates through the combination of inertia weight reduction with cognitive and social 

components to achieve exploration-exploitation balance. The optimization ran for 30 iterations 

while checking convergence through fitness history plots. The final stage of the process revealed 

the best particle which provided the optimal input parameters alongside their corresponding 

tensile and flexural strengths [30]. The hybrid ANN-PSO methodology combines predictive 

modelling techniques with optimization features to drive data-based process parameter 

adjustments which result in better mechanical performance outcomes in 3D printing. The 

detailed methodology of the current work is shown in figure 3. 

“𝒗𝒊
𝒌+𝟏 = 𝒘𝒗𝒊

𝒌 +  𝒄𝟏𝒓𝟏(𝑷𝒃𝒆𝒔𝒕(𝒊)
𝒌 − 𝒙𝒊

𝒌) + 𝒄𝟐𝒓𝟐(𝑮𝒃𝒆𝒔𝒕(𝒊)
𝒌 − 𝒙𝒊

𝒌) (1) 

  

𝒙𝒊
𝒌+𝟏 = 𝒙𝒊

𝒌 + 𝒗𝒊
𝒌+𝟏” (2) 

 

 

Figure 3: Methodology 
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3.Results 

3.1 Trained neural network and validation 

The development of an ANN algorithm through MATLAB 2023a allowed the prediction 

of tensile and flexural strengths from five input variables. The best performing ANN 

configuration was determined to have one hidden layer with 10 neurons shown in figure 4. The 

Levenberg–Marquardt (trainlm) algorithm served as the selection because of its efficient nature 

while employing Tan-sigmoid and Purelin activation functions for the hidden and output layers. 

The dataset consisted of 32 experimental runs, which were split into 70% for training, 15% for 

validation, and 15% for testing. The training process achieved a minimum mean squared error 

(MSE) of 0.00125 within five epochs. The experimental and predicted values matched strongly 

as shown by the high coefficient of determination (R² = 0.97407) in the regression plots. The 

ANN's generalization capabilities were validated through results showing a maximum relative 

error of 0.115 according to table 3. The combined results from table 3 and the regression plots 

from Figure 5 highlight the accuracy of the ANN in predicting tensile and flexural strengths. 

Also the comparison of actual and predicted tensile and flexural strength is shown in figure 6.  

  

Figure 4: Architecture of Neural Network 

Figure 5: Regression Plots for Training, 

Validation, Testing, and Overall Performance 

of ANN 

3.2 Optimization 

PSO-based optimization of FFF process parameters produced significant enhancements 

in mechanical properties. The best set of parameters consists of 0° build orientation with 65 

mm/s printing speed and 100% infill density at 220°C temperature and 0.17 mm layer height. 

With these optimized conditions the tensile strength reached 34.48 MPa and the flexural strength 

achieved 71.07 MPa. The combined best fitness value showing the sum of tensile and flexural 

strengths, was calculated as 105.55, as shown in Figure 7. These findings highlight the 

effectiveness of process parameter optimization in enhancing the mechanical performance of 
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parts produced using low-cost FFF 3D printers, achieving results comparable to those of 

industrial-grade machines. 

Table 3: Predicted and Actual Mechanical Strengths with Relative Errors 

S NO Tensile 

strength 

(Mpa) 

Predicted 

Tensile 

strength 

(Mpa)  

Relative 

error for 

Tensile 

strength 

Flexural 

strength 

(Mpa) 

Predicted 

Flexural 

strength 

(Mpa) 

Relative 

Error for 

flexural 

strength 

1 20.98 21.005                    0.001               56.48 56.582 0.002 

2 22.06 22.004 0.003 54.75 54.354 0.007 

3 24.86 24.749 0.004 58.75 59.003 0.004 

4 29.88 29.927 0.002 63.90 62.992 0.014 

5 20.17 19.985 0.009 55.17 55.29 0.002 

6 32.45 34.183 0.053 65.86 63.848 0.031 

7 26.85 26.972 0.005 60.55 60.852 0.005 

8 22.75 22.6512 0.004 57.85 57.763 0.002 

9 20.28 20.261 0.001 55.17 55.144 0.000 

10 24.98 24.964 0.001 57.74 56.28 0.025 

11 25.86 25.493 0.014 59.75 58.063 0.028 

12 25.86 25.834 0.001 59.76 58.958 0.013 

13 26.94 25.493 0.054 59.86 58.063 0.03 

14 26.75 26.865 0.004 61.73 61.28 0.007 

15 23.86 25.493 0.068 57.65 58.063 0.007 

16 21.23 21.146 0.004 55.90 55.978 0.001 

17 25.86 26.258 0.015 59.75 58.666 0.018 

18 17.45 17.439 0.001 51.73 52.329 0.012 

19 20.56 20.574 0.001 56.74 56.712 0.000 

20 27.98 29.395 0.051 62.84 62.796 0.001 

21 27.07 17.149 0.003 60.76 60.333 0.007 

22 25.75 25.641 0.004 58.77 58.857 0.001 

23 28.85 28.6172 0.008 62.90 60.833 0.033 

24 23.76 25.493 0.073 57.76 58.063 0.005 

25 30.21 30.197 0.000 63.98 63.51 0.007 

26 22.86 25.4932 0.115 56.86 58.063 0.021 

27 28.54 28.297 0.009 61.89 60.469 0.023 

28 23.86 23.907 0.002 58.86 58.968 0.002 

29 24.86 25.493 0.025 58.87 58.063 0.014 

30 22.01 21.86 0.007 57.65 56.91 0.013 
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31 28.85 28.843 0.000 60.65 60.521 0.002 

32 23.45 24.084 0.027 58.74 55.483 0.055 

Table 3: Optimized Process Parameters and Corresponding Mechanical Strengths 

Build 

orientation 

(Degree) 

Print 

Speed 

(mm/s) 

 

Infill 

density 

(%) 

Temperature 

(0C) 

Layer 

height 

(mm) 

Tensile 

strength 

(Mpa) 

Flexural 

strength 

(Mpa) 

0 65 100 220 0.17 34.48 71.07 

 

 

 

Figure 6 Comparison of Actual vs Predicted 

Tensile and Flexural Strengths 

Figure 7 PSO Convergence Plot for Best 

Combined Fitness 

 

4.Conclusion 

• This study investigated the influence of key FFF process parameters like infill density, 

layer height, nozzle temperature, print speed and build orientation on the tensile and 

flexural strengths of PLA parts. A hybrid ANN-PSO method was used for optimization 

methods. 

• The optimized process parameters identified through PSO were infill density (100%), 

nozzle temperature (220 °C), build orientation (0°), speed (65 mm/s) and layer height 

(0.17 mm). These parameters resulted in maximum tensile strength of 34.48 MPa and 

flexural strength of 71.07 MPa. 

• The ANN model demonstrated excellent predictive capabilities by achieving an R² value 

of 0.952 which validated its ability to identify nonlinear relationships between process 

parameters and mechanical properties. 

• A comparison between predicted and experimental values showed minimal errors, 

demonstrating the effectiveness of the hybrid ANN-PSO approach for FFF optimization. 

• The hybrid ANN-PSO optimization technique enhanced process parameter which resulted 

in substantial mechanical performance improvements of PLA parts. This study explores 
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the potential of integrating machine learning and optimization algorithms to enhance 3D 

printing quality and reliability. 
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