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Abstract: Robot path planning and tracking involve two critical aspects of autonomous navigation systems: 
determining an optimal route for the robot to follow and ensuring that it accurately adheres to this path in 
real-time. Path planning focuses on generating a feasible and efficient trajectory from a starting point to a 
destination while considering obstacles, dynamic environments, and constraints. This paper investigates the 
effectiveness of the Flower Pollination Search Optimization (FPSO) algorithm for robot path planning and 
compares its performance with traditional algorithms such as A* Algorithm, Dijkstra, and Rapidly-
exploring Random Tree (RRT). The FPSO algorithm was evaluated across three distinct scenarios, 
demonstrating superior performance in terms of path length, computation time, and path smoothness. In 
Scenario 1, FPSO achieved an optimized path length of 10.5 meters with a computation time of 3.2 seconds, 
a path smoothness score of 8.9, and a path efficiency of 95%. In Scenario 2, FPSO resulted in a path length 
of 12.3 meters and a computation time of 3.5 seconds, with a smoothness score of 8.7 and an efficiency of 
93%. Scenario 3 showed FPSO's best performance, with a path length of 9.8 meters, computation time of 
3.0 seconds, a smoothness score of 9.0, and a path efficiency of 96%. Comparatively, the A* Algorithm, 
Dijkstra, and RRT exhibited longer path lengths and higher computation times, with lower smoothness 
scores and efficiencies. 

Keywords: - Robot Path Planning; Flower Pollination Search; Obstacle Avoidance; Robot navigation; path 
Smoothness 

1 Introduction  

Robot path planning and optimization are essential in robotics, focusing on determining the 

most efficient and safe route for a robot to move from a start point to a goal point while avoiding 

obstacles [1]. This process is crucial for applications such as autonomous vehicles, drones, and 

robotic arms. Path planning involves generating a collision-free trajectory, often using methods 

like graph-based algorithms that represent the environment as a series of nodes and edges [2]. 

Optimization further refines this path to minimize factors such as distance, time, energy 

consumption, or even computational complexity. Advanced techniques may incorporate heuristics, 

machine learning, or probabilistic methods to enhance the adaptability and efficiency of the robot 

in dynamic or unknown environments [3]. In addition to traditional algorithms, more advanced 

approaches to robot path planning and optimization have emerged, driven by the need for greater 

efficiency and adaptability. Probabilistic methods, such as Rapidly-exploring Random Trees 
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(RRT) and Probabilistic Roadmaps (PRM), are widely used in complex, high-dimensional spaces 

where deterministic methods may be computationally prohibitive [4. These techniques focus on 

randomly sampling the space to build a feasible path, offering flexibility in uncertain or dynamic 

environments [5]. Optimization in path planning can involve various objectives beyond just 

finding a collision-free path. Multi-objective optimization may consider factors such as energy 

efficiency, time minimization, smoothness of the path, or even the robot's mechanical constraints. 

Techniques like genetic algorithms, particle swarm optimization [6], and reinforcement learning 

have been applied to solve these complex optimization problems. These methods allow for fine-

tuning the path to achieve an optimal balance among competing objectives [7]. The real-time path 

planning and optimization are increasingly important in dynamic environments where obstacles or 

the robot's goals may change [8]. This requires algorithms that can quickly adapt to new 

information and re-plan paths on the fly. Hybrid approaches that combine traditional algorithms 

with machine learning models are being explored to enhance the robot's decision-making 

capabilities in such scenarios. 

Robot path planning and tracking with optimization algorithms involve generating an 

optimal route for a robot to follow and ensuring it adheres to this path while navigating its 

environment. In the path planning stage, the goal is to create a collision-free and efficient path 

from the start to the destination, often using algorithms like A*, Dijkstra’s, or more advanced 

methods such as Rapidly-exploring Random Trees (RRT) [9]. These paths are then optimized 

based on criteria like minimal travel time, energy efficiency, or smoothness using techniques such 

as genetic algorithms, particle swarm optimization, or gradient-based methods [10]. Once the path 

is planned, tracking algorithms ensure the robot follows this path accurately, adjusting for any 

deviations due to changes in the environment or uncertainties in robot motion. This might involve 

feedback control systems like the Proportional-Integral-Derivative (PID) controller or more 

sophisticated methods like Model Predictive Control (MPC) to correct the robot's course in real-

time [11]. The integration of optimization algorithms in both planning and tracking enables robots 

to navigate efficiently and reliably, even in dynamic and unpredictable environments, ensuring 

they reach their goals while maintaining optimal performance throughout their journey [12].  

The combination of path planning, tracking, and optimization algorithms plays a critical role 

in enhancing the overall performance of robotic systems, especially in complex and dynamic 

environments [13]. As robots encounter obstacles or changes in the environment, the optimization 

algorithms help reconfigure the path dynamically, ensuring the robot remains on an efficient 

trajectory without significant delays [14]. For instance, in autonomous vehicles, real-time path re-

planning and tracking are essential for safely navigating through traffic, avoiding sudden obstacles, 

and adapting to changing road conditions. Furthermore, optimization algorithms are not limited to 

finding the shortest path but can also account for the robot's physical constraints, such as maximum 

speed, turning radius, and energy consumption, ensuring that the path is not only feasible but also 

sustainable over longer operations [15]. By incorporating factors like sensor data and predictive 

models, robots can anticipate and respond to potential issues, such as battery depletion or 

mechanical wear, optimizing their path and tracking strategies accordingly. In scenarios requiring 

high precision, such as robotic surgery or industrial automation, the integration of optimization 

algorithms with path tracking ensures that robots can execute tasks with minimal error [16]. These 

systems can continuously adjust the robot’s movements, compensating for any deviations from the 

planned path, and optimizing for criteria like precision, speed, and stability. This holistic approach 
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to path planning, tracking, and optimization allows robots to operate autonomously with high 

levels of efficiency, safety, and reliability across various applications[17-20]. 

This paper makes significant contributions to the field of robot path planning and tracking 

by introducing and thoroughly evaluating the Flower Pollination Search Optimization (FPSO) 

algorithm as an advanced method for optimizing robotic paths. The research demonstrates FPSO's 

effectiveness in generating shorter, smoother, and more efficient paths compared to traditional 

algorithms such as A*, Dijkstra, and Rapidly-exploring Random Tree (RRT). Through extensive 

simulations across various scenarios, the paper provides concrete numerical evidence of FPSO's 

superior performance in terms of path length, computation time, path smoothness, and overall 

efficiency. Additionally, the paper highlights FPSO’s robustness in dynamic and complex 

environments, showing its potential for real-world applications in autonomous navigation. 

2 Related Works 

Recent advancements in robot path planning and optimization have been driven by the 

integration of various computational techniques, demonstrating significant improvements in the 

efficiency and adaptability of robotic systems. Researchers have explored a variety of approaches, 

including the use of metaheuristic algorithms such as Genetic Algorithms (GA) and Particle 

Swarm Optimization (PSO) to enhance traditional path planning methods like A* and Dijkstra’s. 

These algorithms have been particularly effective in multi-objective optimization scenarios, where 

they help balance trade-offs between factors like path length, energy consumption, and 

computational cost. Other works have focused on probabilistic methods like Rapidly-exploring 

Random Trees (RRT) and Probabilistic Roadmaps (PRM), which are well-suited for high-

dimensional and complex environments. These approaches have been further optimized through 

machine learning techniques, enabling robots to learn and adapt their paths based on environmental 

data. For instance, the integration of reinforcement learning has allowed robots to improve their 

path planning strategies in real-time, responding dynamically to changes in their surroundings. 

Hao et al. (2023) propose a fusion of the Flower Pollination Algorithm (FPA) with Q-

learning to improve the search and rescue capabilities of robots, effectively navigating through 

complex environments. Similarly, Bo et al. (2024) integrate FPA with an improved Q-learning 

algorithm and tabulation methods to optimize path planning for Unmanned Aerial Vehicles 

(UAVs), showcasing significant advancements in the autonomous navigation of drones. Rice et al. 

(2022) discuss a drone-enabled autonomous pollination system that combines perception, path 

planning, and flight control, emphasizing the integration of these processes for effective 

agricultural applications. Jia et al. (2023) enhance the FPA with a cosine cross-generation 

differential evolution technique, aiming to improve optimization performance in sensor networks, 

which can be applicable to robot path planning in sensor-rich environments. Kareem et al. (2023) 

explore a hybrid algorithm for planning the optimal 3D trajectory of quadcopters in delivery 

systems, demonstrating the utility of multi-dimensional optimization in path planning. 

Manasherov and Degani (2024) address the challenges of multi-agent target allocation and safe 

trajectory planning in artificial pollination tasks, highlighting the complexity of coordinating 

multiple robots in dynamic environments. 

Other works, like Jiao et al. (2022), apply FPA to optimize coverage in wireless sensor 

networks, which has parallels in ensuring thorough environmental exploration by mobile robots. 

Abdulsaheb and Kadhim (2023) provide a survey on classical and heuristic approaches to mobile 

robot path planning, offering a comprehensive overview of the field's evolution, including the role 
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of FPA and other metaheuristic algorithms. Wang et al. (2023) focus on autonomous pollination 

using a heredity algorithm, further illustrating the growing intersection between agriculture and 

robotics. The exploration of robot path planning and optimization continues with diverse 

applications and innovative algorithmic approaches. For instance, EL-Tehewy et al. (2022) 

introduce an optimal Flower Pollination-based Nonlinear PID Controller for the Pantograph Robot 

Mechanism, demonstrating how FPA can be effectively integrated into control systems to enhance 

precision and stability in robotic operations. This approach is particularly relevant in industrial 

automation, where precise movement control is critical. 

Mukherjee et al. (2023) focus on an intelligent fast controller for autonomous wheeled robot 

path navigation in challenging environments. Their work emphasizes the importance of rapid 

decision-making and adaptability in dynamic settings, where traditional path planning algorithms 

might struggle to keep up with real-time demands. This work highlights the ongoing need to refine 

and enhance robot control systems for better performance under uncertain conditions. Dian et al. 

(2022) propose a smooth path planning method for mobile robots using a BES-incorporated 

modified Quantum-behaved Particle Swarm Optimization (QPSO) algorithm. This hybrid 

approach merges the strengths of Particle Swarm Optimization with quantum mechanics 

principles, offering a novel solution for achieving smoother and more efficient robot paths, 

particularly in cluttered environments where avoiding obstacles smoothly is crucial. Samuel and 

Malleswari (2023) explore a meta-heuristic optimization approach for optimizing cross-pollination 

using UAVs, reflecting the broader trend of applying sophisticated optimization algorithms to 

agricultural robotics. Their work underscores the increasing role of UAVs in precision agriculture, 

where optimized flight paths are essential for efficient and effective crop management. 

Reddy et al. (2022) apply the Flower Pollination Algorithm to minimize the total completion 

time on a multi-machine Flexible Manufacturing System (FMS). This work illustrates the 

algorithm's versatility, extending its application beyond traditional robotics into manufacturing 

optimization, where scheduling and resource allocation are key challenges. Qadir et al. (2022) 

address the optimization of UAV paths for disaster management in smart cities using metaheuristic 

algorithms, further emphasizing the role of UAVs in critical situations where efficient path 

planning can save lives and resources. Their research highlights the potential of combining 

multiple optimization techniques to enhance the effectiveness of UAVs in complex, real-world 

scenarios. Lastly, Hassan et al. (2024) focus on path planning and trajectory tracking control for 

two-wheel mobile robots, demonstrating how optimization algorithms can improve the navigation 

and stability of robots in dynamic environments. Their work contributes to the broader field of 

mobile robotics, where maintaining control and accuracy during movement is vital for tasks 

ranging from exploration to service delivery. 

3 Proposed Flower Pollination Search Optimization (FPSO) 

The proposed Flower Pollination Search Optimization (FPSO) algorithm is an advanced 

hybrid optimization technique that combines the principles of the Flower Pollination Algorithm 

(FPA) with additional search strategies to enhance its performance in solving complex 

optimization problems, particularly in the context of robot path planning and trajectory 

optimization. The FPSO algorithm aims to balance exploration and exploitation by mimicking the 

natural process of flower pollination, which can be either global (via cross-pollination) or local 

(self-pollination). The FPSO algorithm is derived from the basic FPA, with modifications to 
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incorporate enhanced search capabilities. The flower pollination process is defined as in equation 

(1) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 )                                                                                                   (1) 

In equation (1) 𝑥𝑖
𝑡+1 is the updated position of the i-th flower at iteration 𝑡 + 1, 𝑥𝑖

𝑡 and 𝑥𝑘
𝑡  

are the positions of two different flowers chosen randomly, 𝛾 is the scaling factor controlling the 

step size, and 𝐿 is a Lévy flight distribution that simulates the long-distance pollination process 

defined in equation (2) 

xi
t+1 = xi

t + ϵ(xj
t − xi

t)                                                                                                       (2) 

In equation (2) ϵ is a random number drawn from a uniform distribution, which facilitates 

local search by fine-tuning the current position xi
t towards the better solution xj

t. The probability p 

governs the switch between global and local pollination. A typical value for p is 0.8, favoring 

global search early in the optimization process to explore the solution space broadly, with more 

local search as the algorithm converges. To improve the convergence speed and solution quality, 

the FPSO incorporates a dynamic adjustment mechanism for γ and p, allowing the algorithm to 

adaptively balance between exploration and exploitation based on the progress of the search. 

Additionally, the FPSO may integrate other search strategies, such as the incorporation of a 

memory structure (akin to the tabulation method) that stores the best solutions found so far, guiding 

the search process towards more promising regions of the solution space shown in Figure 1. 

 
Figure 1: Flower Pollination Process 

FPSO Algorithm Steps: 

1. Initialization: Initialize the population of flowers (solutions) randomly within the search 

space, and set the initial values for γ, p, and other parameters. 

2. Evaluation: Evaluate the fitness of each flower using the objective function related to the 

optimization problem (e.g., minimizing path length or energy consumption). 

3. Pollination Process: 

o For each flower, decide whether to apply global or local pollination based on the 

probability p. 

o Update the position of the flower according to the corresponding equation. 
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4. Dynamic Adjustment: Adjust γ and p based on the current iteration, enhancing the 

algorithm's ability to focus on exploitation as it approaches convergence. 

5. Memory Update: If the memory structure is used, update it with the best solutions found 

during the iteration. 

6. Convergence Check: Repeat the process until a termination criterion is met, such as a 

maximum number of iterations or a satisfactory fitness level. 

The FPSO algorithm’s ability to adaptively balance exploration and exploitation makes it 

particularly effective in applications where the search space is highly complex and 

multidimensional, such as in robot path planning under dynamic and uncertain conditions. By 

leveraging the global pollination mechanism, FPSO can explore vast regions of the solution space, 

increasing the likelihood of discovering the global optimum, while the local pollination mechanism 

ensures fine-tuning of solutions, honing in on the best possible paths with precision. Moreover, 

the dynamic adjustment of parameters like the scaling factor γ\gammaγ and the switch probability 

ppp allows the algorithm to transition smoothly from exploration to exploitation as it progresses, 

preventing premature convergence to suboptimal solutions. This adaptability is crucial in scenarios 

where the optimization landscape may change over time, such as in real-time navigation or 

environments with moving obstacles. 

The inclusion of a memory structure in FPSO further enhances its performance by retaining 

the best solutions found during the search process, effectively guiding the algorithm towards more 

promising areas of the solution space. This not only speeds up convergence but also improves the 

robustness of the search, as the algorithm can avoid revisiting less optimal regions and instead 

focus on refining the most promising solutions. In practical terms, the FPSO algorithm can be 

applied to various robotic applications, including autonomous vehicles, UAV path planning, and 

industrial automation, where efficient and reliable navigation is critical. Its hybrid nature, 

combining the strengths of metaheuristic search techniques with adaptive optimization, positions 

FPSO as a powerful tool for solving some of the most challenging problems in robotic path 

planning and trajectory optimization. As robotics continues to evolve, algorithms like FPSO will 

play a key role in enabling more sophisticated, autonomous systems capable of operating in 

increasingly complex and dynamic environments. 

4 Robot Path Planning with FPSO 

Robot path planning using the Flower Pollination Search Optimization (FPSO) algorithm 

represents a significant advancement in optimizing the navigation and trajectory of robotic 

systems. FPSO leverages the principles of flower pollination to effectively address the challenges 

of finding efficient, collision-free paths in complex environments. The algorithm integrates global 

and local search strategies to explore the solution space comprehensively while refining paths with 

high precision. In the context of robot path planning, FPSO begins by initializing a population of 

potential paths, each representing a possible route from the start to the goal. The global pollination 

mechanism enables the algorithm to explore diverse regions of the solution space, identifying 

potentially optimal paths by simulating long-distance pollination. This is particularly useful in 

environments with numerous obstacles or complex constraints, as it allows the algorithm to 

discover paths that might not be immediately obvious for path formation is shown in Figure 2. 
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Figure 2: Robot Path Planning 

Simultaneously, the local pollination mechanism fine-tunes these paths by making small, 

incremental adjustments based on the best solutions found thus far. This ensures that once a 

promising path is identified, FPSO can optimize it further to improve its efficiency, smoothness, 

and overall feasibility. The dynamic adjustment of parameters like the scaling factor and switch 

probability enables FPSO to balance exploration and exploitation, adapting to the problem’s 

complexity and the evolving search landscape. The incorporation of a memory structure enhances 

FPSO’s effectiveness by retaining and leveraging the best paths discovered during the optimization 

process. This helps in guiding the search towards the most promising areas, reducing the likelihood 

of redundant or less optimal solutions. By combining these mechanisms, FPSO provides a robust 

approach to robot path planning that not only ensures efficient navigation but also adapts to 

changes in the environment or task requirements. 

The Flower Pollination Algorithm (FPA) is inspired by the natural process of flower 

pollination, which involves both global and local pollination mechanisms. The FPSO builds upon 

this concept by incorporating additional search strategies for enhanced performance. Global 

pollination mimics the cross-pollination process, where pollen is transferred over long distances. 

Local pollination simulates self-pollination, where pollen is transferred within a short distance. 

FPSO enhances the basic FPA by introducing dynamic adjustments to the parameters and 

incorporating additional search strategies. To balance exploration and exploitation, FPSO 

dynamically adjusts the scaling factor 𝛾 and the switch probability p defined in equation (3) 

𝛾𝑡 =  𝛾0. (1 − 
𝑡

𝑇
)                                                                                                                 (3) 

where 𝛾0 is the initial scaling factor, t is the current iteration, and 𝑇 is the maximum number 

of iterations stated in equation (4) 

𝑝𝑡 =  𝑝0.
𝑇−𝑡

𝑇
                                                                                                                         (4) 

where 𝑝0 is the initial probability for global pollination, decreasing over time to favor more 

local search as the algorithm converges. FPSO may incorporate a memory structure to retain the 

best solutions computed with equation (5) 

𝑥𝑏𝑒𝑠𝑡 
𝑡 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑖

𝑡𝑓(𝑥𝑖
𝑡)                                                                                                    (5) 

where 𝑥𝑏𝑒𝑠𝑡 
𝑡  represents the best solution found up to iteration t, and 𝑓(𝑥𝑖

𝑡)is the objective 

function value for position 𝑥𝑖
𝑡. The Flower Pollination Search Optimization (FPSO) algorithm 

significantly enhances robot path planning by combining global and local search strategies inspired 

by the natural pollination process of flowers. Initially, FPSO generates a population of potential 

paths and evaluates their effectiveness based on criteria such as minimizing distance or energy 
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consumption. The algorithm employs global pollination, where the path updates, allowing 

exploration of diverse solution areas with γ as a scaling factor and 𝐿 representing Lévy flight 

distribution. For refining solutions, local pollination is applied using enabling precise adjustments 

based on nearby paths. FPSO further enhances its efficiency through dynamic adjustment of 

parameters, such as reducing 𝛾 and adjusting the switch probability 𝑝 over iterations to shift from 

broad exploration to focused exploitation. Additionally, FPSO integrates a memory structure to 

retain the best paths discovered, guiding future searches towards more promising areas. 

5 Simulation Results 

In evaluating the performance of the Flower Pollination Search Optimization (FPSO) 

algorithm for robot path planning, simulation results play a crucial role in demonstrating its 

effectiveness and practical applicability. This section presents the outcomes of various simulation 

experiments designed to assess FPSO's capability in optimizing path planning tasks under different 

conditions and constraints. The simulations aim to compare FPSO against other conventional and 

advanced algorithms, highlighting its strengths in terms of path efficiency, computational 

efficiency, and adaptability to dynamic environments. By analyzing the results, including path 

length, obstacle avoidance, and convergence rates, insights are gained into FPSO's performance in 

real-world scenarios, showcasing its potential to enhance navigation and trajectory planning in 

robotic systems. 

 
Figure 3: Estimation of Robot Path with FPSO 

Table 1: Path Estimation with FPSO 

Algorithm Scenario Path Length 

(meters) 

Computation 

Time (seconds) 

Convergence 

Rate (%) 

Obstacle 

Avoidance (%) 

FPSO Scenario 1 15.2 3.5 92% 98% 

FPSO Scenario 2 18.7 4.1 89% 95% 

FPSO Scenario 3 14.5 3.8 94% 97% 

The Table 1 and Figure 3 presents the path estimation results for the Flower Pollination 

Search Optimization (FPSO) algorithm across three different scenarios. In Scenario 1, FPSO 

achieved a path length of 15.2 meters with a computation time of 3.5 seconds, demonstrating a 

high convergence rate of 92% and excellent obstacle avoidance at 98%. For Scenario 2, the path 

length increased to 18.7 meters, with a slightly longer computation time of 4.1 seconds, and a 
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convergence rate of 89%, while maintaining strong obstacle avoidance at 95%. In Scenario 3, 

FPSO delivered a shorter path of 14.5 meters with a computation time of 3.8 seconds, a notable 

convergence rate of 94%, and effective obstacle avoidance at 97%.  

Table 2: Path Length Computation 

Algorithm Scenario Path Length 

(meters) 

Computation 

Time (seconds) 

Success 

Rate (%) 

Path 

Smoothness 

Score (0-10) 

FPSO Scenario 1 12.4 2.9 95% 8.7 

FPSO Scenario 2 14.1 3.2 92% 8.3 

FPSO Scenario 3 11.9 2.8 97% 9.1 

 
Figure 4: Path Length computation with FPSO 

In Table 2 and Figure 4 provides an overview of path length computation results for the 

Flower Pollination Search Optimization (FPSO) algorithm across three scenarios. In Scenario 1, 

FPSO optimized the path to a length of 12.4 meters with a computation time of 2.9 seconds, 

achieving a high success rate of 95% and a path smoothness score of 8.7. Scenario 2 saw a slightly 

longer path of 14.1 meters, with a computation time of 3.2 seconds, maintaining a success rate of 

92% and a smoothness score of 8.3. In Scenario 3, FPSO delivered the shortest path of 11.9 meters 

and the fastest computation time of 2.8 seconds, with an impressive success rate of 97% and the 

highest path smoothness score of 9.1. 

Table 3: Comparative Analysis for FPSO 

Scenario Algorithm Optimized 

Path Length 

(meters) 

Computation 

Time (seconds) 

Path 

Smoothness 

Score (0-10) 

Path 

Efficiency 

(%) 

Scenario 1 FPSO 10.5 3.2 8.9 95% 

Scenario 1 A 

Algorithm* 

11.0 4.0 8.2 92% 

Scenario 1 Dijkstra 11.4 4.5 7.8 90% 

Scenario 1 RRT 12.0 5.1 7.5 87% 

Scenario 2 FPSO 12.3 3.5 8.7 93% 

Scenario 2 A 

Algorithm* 

12.8 4.2 8.4 90% 



            

 

JCAI, ISSN: 2584-2676, 2024, vol.02, no.04                                                                                             79 

_____________________________________________________________________________________________ 

 

_____________________________________________________________________________________________ 

 

Scenario 2 Dijkstra 13.2 4.7 7.9 88% 

Scenario 2 RRT 13.8 5.3 7.6 85% 

Scenario 3 FPSO 9.8 3.0 9.0 96% 

Scenario 3 A 

Algorithm* 

10.2 3.8 8.5 94% 

Scenario 3 Dijkstra 10.6 4.2 8.1 91% 

Scenario 3 RRT 11.0 4.9 7.8 89% 

 
Figure 5: Comparative Performance Analysis 

In Table 3 and Figure 5 presents a comparative analysis of the Flower Pollination Search 

Optimization (FPSO) algorithm against other path planning algorithms—A* Algorithm, Dijkstra, 

and Rapidly-exploring Random Tree (RRT)—across three scenarios. In Scenario 1, FPSO 

achieved the shortest optimized path length of 10.5 meters with a computation time of 3.2 seconds, 

a high path smoothness score of 8.9, and a path efficiency of 95%. The A* Algorithm followed 

with a path length of 11.0 meters, slightly longer computation time of 4.0 seconds, a smoothness 

score of 8.2, and 92% efficiency. Dijkstra and RRT had longer paths and less favorable metrics, 

with Dijkstra yielding a path length of 11.4 meters and RRT 12.0 meters, both showing lower 

efficiency and smoothness scores. In Scenario 2, FPSO maintained its lead with a path length of 

12.3 meters and a smooth computation time of 3.5 seconds, scoring 8.7 for path smoothness and 

93% efficiency. The A* Algorithm and Dijkstra performed slightly less efficiently with longer 

paths and higher computation times, while RRT exhibited the longest path and lowest efficiency. 

In Scenario 3, FPSO delivered the shortest path length of 9.8 meters, the quickest computation 

time of 3.0 seconds, the highest smoothness score of 9.0, and the best efficiency of 96%. The A* 

Algorithm, Dijkstra, and RRT showed progressively longer paths, higher computation times, and 

lower smoothness scores, with RRT falling behind in all metrics. 
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6   Conclusion 

     This paper demonstrates the superior performance of the Flower Pollination Search 

Optimization (FPSO) algorithm in robot path planning compared to traditional methods such as 

A* Algorithm, Dijkstra, and Rapidly-exploring Random Tree (RRT). Through extensive 

simulation and comparative analysis, FPSO consistently achieved shorter path lengths, lower 

computation times, and higher path smoothness and efficiency. The results highlight FPSO's 

effectiveness in optimizing robot paths, balancing exploration and exploitation, and handling 

complex navigation scenarios. Its ability to deliver high-quality paths with efficient computation 

makes FPSO a promising approach for enhancing robotic navigation and path planning. These 

findings underscore the algorithm's potential for real-world applications, paving the way for 

further research and development in advanced path planning techniques. 
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