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Abstract: In an era characterized by the proliferation of Internet of Things (IoT) devices and the critical 
importance of data integrity, the need for robust security mechanisms has never been greater. This paper 
introduces a novel "Secure Tamper Protocol Model" (STPM) integrated with an IoT-based blockchain 
architecture, designed to address the growing challenges of data mitigation in IoT ecosystems. This 
research explores the application of Symmetric Homomorphic Hidden Markov Models (SHHMMs) in the 
context of anomaly detection, with a focus on %G - IoT environments. SHHMMs have shown remarkable 
promise in accurately identifying anomalies within diverse datasets. The study presents numerical 
findings indicating the model's high accuracy, precision, recall, and F1-Score, with an initial accuracy of 
98.2% reaching 99.0% at Epoch 100. Comparative analysis against traditional methods like Hidden 
Markov Models (HMM) and Long Short-Term Memory (LSTM) models consistently highlights 
SHHMM's superior performance, demonstrated through Packet Delivery Ratio (PDR), Packet Loss, End-
to-End Delay, and Overhead metrics. The integration of blockchain technology further enhances the 
practicality of SHHMM in ensuring data integrity and security. This research contributes to the 
advancement of anomaly detection techniques in 5G- IoT applications, offering a blend of precision and 
robustness. 
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1.Introduction  

The Internet of Things (IoT) is a revolutionary concept that has permeated nearly every 

facet of modern life. It entails the interconnection of a diverse range of physical objects or 

"things" through the internet, endowing them with the ability to communicate and exchange data 

with one another [1]. These objects span from everyday devices like smartphones, thermostats, 

and home appliances to complex industrial machinery and environmental sensors. What sets IoT 

apart is its capacity to enable these devices to collect data, process it either locally or in the 

cloud, and subsequently trigger actions or responses, often without direct human involvement 

[2]. This connectivity and automation bring about unparalleled convenience, efficiency, and new 

opportunities across various industries [3].  

IoT's promise lies in its potential to enhance our lives through smart cities, autonomous 

vehicles, remote healthcare monitoring, and countless other applications, all while fostering 

interoperability and scalability in our increasingly connected world. Blockchain is a 

revolutionary and decentralized digital ledger technology that has gained significant attention 
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and popularity in recent years. Blockchain's role in the Internet of Things (IoT) is pivotal, 

primarily for its ability to fortify security and trust within the IoT ecosystem [4]. By employing a 

decentralized ledger, blockchain ensures that data generated by IoT devices remains tamper-

resistant and immutable. This heightened security safeguards against unauthorized access and 

data manipulation, instilling confidence in the integrity of IoT networks [5]. Furthermore, 

blockchain's capacity for managing device identities and access control enhances IoT security. 

Each IoT device can possess a unique, verifiable identity stored securely on the blockchain, 

enabling robust authentication and authorization [6]. Smart contracts, another feature of 

blockchain, enable the automation of processes and actions based on real-time data, allowing IoT 

devices to operate autonomously and efficiently [7]. The decentralized nature of blockchain also 

reduces the vulnerability of single points of failure in IoT networks, enhancing their resilience. In 

addition to security, blockchain facilitates data monetization, fosters interoperability among 

diverse devices, and optimizes supply chain management by providing transparency and 

traceability [8]. Blockchain plays a fundamental role in elevating the security, efficiency, and 

trustworthiness of IoT applications across various industries. 

Data mitigation in IoT (Internet of Things) is a critical process aimed at efficiently 

managing the deluge of data generated by IoT devices [9]. In the IoT ecosystem, devices 

continuously produce vast volumes of data, and handling this influx is paramount for optimizing 

storage, transmission, and processing [10]. To achieve this, data filtering mechanisms are 

employed to sift through and transmit only relevant information, while data compression 

techniques reduce the size of data packets, conserving precious bandwidth and reducing transfer 

costs [11]. Additionally, data aggregation consolidates information over time or based on 

specific conditions, lessening the burden of transmitting granular data. Edge computing further 

aids in data mitigation by enabling localized processing, reducing the necessity to transfer large 

volumes of data to centralized servers [12]. Establishing data retention policies, implementing 

lifecycle management strategies, ensuring data security, and leveraging advanced analytics all 

contribute to the efficient management of IoT-generated data, ensuring that it remains a valuable 

asset rather than an overwhelming liability [13]. Integrating the Internet of Things (IoT) with 

blockchain technology holds immense promise, but it also comes with a set of complex issues 

concerning data mitigation. One of the foremost challenges is scalability, as blockchain networks 

can struggle to handle the enormous volume of transactions generated by IoT devices, potentially 

leading to congestion and latency [14]. Additionally, the sheer volume of data produced by IoT 

devices poses a storage dilemma, necessitating strategies to select, aggregate, or summarize data 

before committing it to the blockchain [15]. The latency inherent in blockchain consensus 

processes may not align with the real-time demands of IoT applications, and transaction costs 

can become prohibitive in high-frequency environments. Achieving interoperability among 

diverse IoT ecosystems, preserving data privacy, selecting the appropriate consensus mechanism, 

ensuring regulatory compliance, and addressing energy efficiency concerns are all pivotal issues 

that must be carefully navigated to harness the full potential of IoT integrated with blockchain 

[16]. Successful data mitigation strategies in this context require a nuanced and adaptive 

approach tailored to specific use cases and evolving blockchain technologies. 

Internet of Things (IoT) with blockchain technology is a powerful concept but presents a 

complex landscape of challenges in data mitigation [17]. Scalability concerns arise due to 

blockchain networks struggling to handle the sheer volume of IoT-generated transactions, 

potentially causing delays. Additionally, the vast amounts of data produced by IoT devices 

require efficient strategies for selection, aggregation, or summarization before being recorded on 
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the blockchain [18]. The inherent latency in blockchain consensus processes might not align with 

real-time IoT requirements, and transaction costs can become prohibitive [19]. Ensuring 

interoperability across diverse IoT ecosystems, preserving data privacy, selecting appropriate 

consensus mechanisms, addressing regulatory compliance, and dealing with energy efficiency 

are crucial issues that demand careful navigation [20]. Effective data mitigation strategies in this 

context must be tailored to specific use cases and evolving blockchain technologies while 

balancing the demands of data integrity, cost-efficiency, and real-time responsiveness. Security 

issues and challenges in the Internet of Things (IoT) ecosystem are multifaceted and demand 

significant attention [21]. IoT devices, often constrained by resource limitations, are susceptible 

to vulnerabilities that can be exploited by malicious actors. The vast amounts of sensitive data 

collected by these devices, coupled with inadequate data protection measures, make data 

breaches a serious concern. Network security is also paramount, as IoT devices communicate 

over potentially vulnerable wireless networks [22]. Weak authentication mechanisms and poor 

device management practices can lead to unauthorized access, while physical security threats 

when attackers gain physical access to devices. Moreover, the use of compromised IoT devices 

in botnets for DDoS attacks poses a considerable threat [23]. The absence of uniform security 

standards, supply chain vulnerabilities, and regulatory compliance complexities further 

exacerbate the security landscape [24]. Addressing these challenges necessitates a holistic 

approach, including secure device design, robust network security, vigilant monitoring, and 

ongoing threat detection, along with collaboration among stakeholders, regulatory initiatives, and 

industry-wide efforts to establish comprehensive security measures in IoT [25]. Blockchain 

serves as a robust security enabler in IoT applications by bolstering data integrity, authentication, 

and privacy in the interconnected world of devices. Through its immutable and tamper-resistant 

ledger, blockchain safeguards data integrity, assuring that the information generated by IoT 

devices remains unaltered and trustworthy. Blockchain's ability to establish unique cryptographic 

identities for IoT devices enhances authentication and access control, mitigating the risk of 

unauthorized access or device impersonation [26]. Secure transactions and smart contracts 

executed on the blockchain create transparency and eliminate the need for intermediaries in IoT 

ecosystems, reducing the attack surface. Decentralization in blockchain networks enhances 

resilience to attacks, while privacy-enhancing technologies protect sensitive data. This 

technology also aids in auditing security and compliance, ensuring that security policies and 

regulations are consistently met [27-30]. Moreover, blockchain's potential to securely manage 

firmware updates and ensure supply chain security adds layers of protection to IoT deployments. 

In essence, blockchain bolsters the security and trustworthiness of IoT applications, addressing 

critical security challenges in an increasingly connected world. 

The paper introduces a novel architecture that combines Internet of Things (IoT) 

technology with blockchain technology. This architecture addresses the challenges of secure data 

mitigation in IoT systems, ensuring the integrity and confidentiality of data transmitted within 

IoT networks. Firstly, it introduces an innovative IoT blockchain architecture designed to tackle 

the pressing issue of secure data mitigation in IoT networks. This architecture incorporates the 

Symmetric Homomorphic Hidden Markov Model (SHHMM) as a key element, enabling secure 

data processing and mitigation while preserving data privacy. One of the key contributions of 

this research lies in its ability to ensure data integrity within IoT systems. With leveraging 

blockchain technology, the paper establishes a tamper-proof ledger that records all IoT data 

transactions, guaranteeing the immutability and trustworthiness of the data throughout its 

lifecycle. Furthermore, the paper conducts thorough simulations and performance evaluations to 
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substantiate the effectiveness of the proposed architecture. It provides empirical evidence 

through metrics such as Packet Delivery Ratio (PDR), Packet Loss, End-to-End Delay, and 

Overhead, showcasing the advantages of the SHHMM-based approach in enhancing data 

security and mitigating conflicting data in IoT applications. 

2.IoT Blockchain Architecture 

The architecture of an IoT blockchain system is a complex framework that orchestrates the 

interaction between IoT devices and a blockchain network. IoT devices, such as sensors and 

smart appliances, gather data from the physical world and often require a secure means of 

transmitting this data to the blockchain. The core of this architecture is the blockchain network, 

which can be either a public or private blockchain, where transactions and smart contracts are 

recorded [31-35]. Smart contracts play a pivotal role in automating actions based on the data 

collected by IoT devices, enabling conditional execution of processes. To bridge the gap between 

IoT devices and the blockchain, an IoT data gateway or intermediary layer is commonly used to 

collect, process, and transmit data securely. Robust identity and access management systems are 

crucial to ensure the security and privacy of data, with each IoT device having a unique identity 

on the blockchain [36-37]. Security features such as encryption, digital signatures, and secure 

communication protocols safeguard data integrity. Scalability solutions address the challenge of 

handling the immense volume of IoT data. Additionally, device management, user interfaces, 

monitoring tools, and analytics components complete the architecture, facilitating efficient 

device control, human interaction, system oversight, and data analysis. The architecture's 

flexibility and design may vary depending on the specific use case, but its overarching purpose is 

to create a resilient, secure, and efficient environment for IoT devices to interact seamlessly with 

blockchain technology, unlocking new opportunities in data management and automation as 

illustrated in figure 1. 

 
Figure 1: Tamper Protocol Model 

IoT blockchain architecture for the Symmetric Homomorphic Hidden Markov (SHHMM)" 

represents a sophisticated integration of Internet of Things (IoT) technology, blockchain 

technology, and Symmetric Homomorphic Hidden Markov Models (SHHMMs) to address 

specialized data analysis and security needs. In this framework, IoT devices gather data, which 

may be sequential and sensor-based, and this data undergoes preprocessing to ensure its 

readiness for analysis. The data is then securely transmitted to a blockchain network, where its 

integrity and immutability are guaranteed. The key innovation lies in the application of 

SHHMMs, a mathematical modeling technique, for analyzing this IoT data within the blockchain 

context. These models, designed for specific tasks, facilitate advanced data analysis and 
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predictions. Additionally, smart contracts on the blockchain can automate actions based on 

SHHMM outcomes, enabling real-time decision-making. The architecture would likely 

incorporate encryption measures to protect sensitive IoT data, and robust access control 

mechanisms to ensure only authorized entities can access and interact with the data. While 

highly specialized, this architecture has the potential to revolutionize various domains, from 

industrial predictive maintenance to healthcare analytics, by combining the power of IoT, 

blockchain's security, and SHHMMs' data analysis capabilities. 

This is a simplified illustration of the symmetric homomorphic property, where 

mathematical operations (addition in this case) are performed on encrypted data, and the result is 

consistent with the unencrypted sum. The process and flow of the HMM model is presented in 

figure 2. 

 
Figure 2: Flow of HMM 

Theorem 1: Secure State Transition Computation in SHHMM 

In an SHHMM, the secure computation of state transition probabilities can be performed 

collaboratively on encrypted data, ensuring data privacy and preserving the model's accuracy. 

Proof: 

Consider an SHHMM with hidden states                   and state transition 

probabilities                for all state pairs          . Each party holds encrypted state 

transition probabilities, represented as                . Utilize homomorphic encryption to 

securely compute the product of these encrypted probabilities: 

Encrypted Product:                                                     
       

Parties collaboratively compute this encrypted product while keeping their data encrypted 

throughout the process. Decrypt the result using the private decryption keys to obtain the joint 

state transition probability: 

Decrypted Product:                                                       
        

The decrypted product provides an accurate representation of the joint state transition 

probability, allowing secure collaborative computation while preserving data privacy. This 

theorem illustrates the secure computation of state transition probabilities within an SHHMM, 

enabling privacy-preserving operations on model parameters. 

Theorem 2: Homomorphic Emission Probabilities in SHHMM 

In an SHHMM, homomorphic encryption can be applied to emission probabilities, 

allowing secure computations on encrypted data while preserving the model's accuracy. 

Proof: 

Consider an SHHMM with observable symbols                   and emission 

probabilities                for all symbols     and hidden states    . Each party holds encrypted 

emission probabilities, represented as                . Apply homomorphic encryption to 

securely compute the sum of these encrypted probabilities for a given observable symbol    : 
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Encrypted Sum:                                                        
Collaboratively compute this encrypted sum while maintaining data encryption. Decrypt 

the result using the private decryption keys to obtain the joint emission probability for symbol 

   : 
Decrypted Sum:                                                           

The decrypted sum accurately represents the joint emission probability for symbol O_i, 

enabling secure collaborative computations on emission probabilities without revealing sensitive 

information. Figure 3 illustrated the tamper -proof model with the SHHMM model for the secure 

data transmission in the IoT. 

 
Figure 3: SHHMM model for the Homomorphic Process 

3.Proposed Symmetric Homomorphic Hidden Markov (SHHMM) 

SHHMMs with a tamper-proof blockchain protocol involves complex processes, and 

providing a complete set of equations for the entire system is challenging. In the context of 

SHHMMs for anomaly detection, the likelihood calculation can be represented as follows: 

Observation Sequence denoted as                          for the Hidden State 

Sequence represented as                         . Likelihood of the Observation Sequence 

Given the SHHMM Model is represented in equation (1) 

                                                                   
                                                                                                                                  (1) 

Here:         represents the initial state probability;                represents the state 

transition probability; and                  represents the emission probability. With a 

tamper-proof blockchain protocol involves recording data transactions and actions on the 

blockchain. While the actual blockchain operations use cryptographic algorithms and data 

structures, the high-level concept. A transaction is recorded on the blockchain with a unique 

transaction ID (TxID). Data from SHHMM-based analysis, including likelihood scores and 

anomaly flags, can be recorded as transactions as follows in equation (2) 

                         –                                  

                                                                  
                                                                     
                                                                

                                                                                                                                    (2) 
Once recorded on the blockchain, these transactions are immutable, meaning they cannot 

be altered or deleted. Blockchain often implements access control mechanisms through smart 

contracts or permissions. While not expressed as equations, these mechanisms ensure that only 

authorized users or entities can access or modify specific data records on the blockchain. Alerts 
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can be triggered when anomalies are detected by SHHMM analysis. While not represented by 

equations, the blockchain can facilitate the notification process by securely transmitting alerts or 

notifications to relevant stakeholders when significant anomalies are detected. Blockchain's 

transparency ensures that all data-related activities, including data transactions, access requests, 

and updates, are visible and traceable. While not represented as equations, this transparency 

promotes accountability among users and administrators. 

 
Figure 4: Blockchain with SHHMM 

  Blockchain technology involves cryptographic operations, such as hashing and digital 

signatures, to create an immutable and tamper-proof ledger as shown in figure 4. These are used 

to create a unique hash (digest) of data, ensuring that any change in data would result in a 

different hash given in equation (3) 

                                                                                                           (3) 

 Digital signatures use public-key cryptography to ensure the authenticity and integrity of 

data. The equation for digital signatures involves complex mathematical operations presented in 

equation (4) 

                                                                                                          (4) 

Blockchain networks use consensus algorithms like Proof of Work (PoW) or Proof of 

Stake (PoS) to validate and add new blocks to the chain. These algorithms involve cryptographic 

puzzles and probabilistic calculations. The integration involves using the likelihood calculated by 

SHHMMs for anomaly detection. If the calculated likelihood falls below a predefined threshold, 

it may indicate an anomaly conditions as follows 

                                   
                     

The likelihood of an observation sequence O given an SHHMM model can be computed 

using the Forward Algorithm. With Initialization Step         and Forward Probability        

at the first time step for each hidden state   denoted in equation (5) 

                                                                                                                      (5) 

In above equation (10)      represents the initial state probability for state i; 

          represents the emission probability for state i emitting symbol      with the 

Recursion Step (t > 1). The Forward Probability        at time step t for each hidden state   
computed in equation (6) 

                                                                                                        (6) 
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where:          is the forward probability at time step     for state  ;        represents 

the state transition probability from state i to state j;           represents the emission 

probability for state j emitting symbol        
3.1 Likelihood of the Observation Sequence 

The overall likelihood of the observation sequence O given the SHHMM model is the sum 

of forward probabilities for all hidden states at the final time step T denoted in equation (7) 

                                                                                                              (7) 

Blockchain transactions are typically hashed using cryptographic hash functions like SHA-

256 is represented in equation (8) 

                                                                                           (8) 

where Transaction_Data includes details of the transaction, such as sender, receiver, data, 

and timestamps. Digital signatures ensure the authenticity and integrity of blockchain 

transactions. They involve the use of public and private keys and mathematical operations. The 

signature equation is typically represented as in equation (9) 

                                                                                              (9) 

Here, Sign is a cryptographic function that uses the private key to generate a unique 

signature for the transaction. Blockchain consensus mechanisms involve mathematical 

algorithms to validate and add new blocks to the chain. With Proof of Work (PoW) uses complex 

cryptographic puzzles where miners solve mathematical problems to create new blocks. 

Algorithm 2: SHHMM Tamper Proof Model 

# Import necessary libraries and modules 

# Define SHHMM model parameters 

initial_state_probabilities = ... 

transition_probabilities = ... 

emission_probabilities = ... 

# Initialize blockchain 

blockchain = Blockchain() 

# Function to calculate likelihood using SHHMM 

def calculate_likelihood(observations): 

    forward_probabilities = []   

    # Initialization step 

    forward_prob = [] 

    for state in range(num_states): 

        forward_prob.append(initial_state_probabilities[state] * 

emission_probabilities[state][observations[0]]) 

    forward_probabilities.append(forward_prob) 

     # Recursion step 

    for time_step in range(1, len(observations)): 

        forward_prob = [] 

        for state in range(num_states): 

            prev_forward_prob = forward_probabilities[-1] 
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            transition_sum = sum(prev_forward_prob[prev_state] * 

transition_probabilities[prev_state][state] for prev_state in range(num_states)) 

            forward_prob.append(transition_sum * 

emission_probabilities[state][observations[time_step]]) 

        forward_probabilities.append(forward_prob) 

       # Calculate the likelihood of the observation sequence 

    likelihood = sum(forward_probabilities[-1]) 

    return likelihood 

# Function to record data on the blockchain 

def record_data_on_blockchain(data, transaction_type): 

    # Generate a unique transaction ID (TxID) 

    txid = generate_unique_txid(data) 

    # Hash the data for inclusion in the blockchain 

    data_hash = hash_data(data) 

    # Sign the transaction using private key 

    signature = sign_transaction(data_hash) 

    # Create a blockchain transaction 

    blockchain_transaction = create_blockchain_transaction(txid, data_hash, signature, 

transaction_type) 

    # Add the transaction to the blockchain 

    blockchain.add_transaction(blockchain_transaction) 

# Main loop for processing incoming IoT data 

while True: 

    # Receive and preprocess IoT data 

    raw_data = receive_data() 

    preprocessed_data = preprocess_data(raw_data) 

    # Calculate likelihood using SHHMM 

    likelihood = calculate_likelihood(preprocessed_data) 

    # Define a threshold for anomaly detection 

    threshold = 0.001  # Adjust as needed 

    # Check if likelihood is below the threshold 

    if likelihood < threshold: 

        # Anomaly detected, record anomaly data on blockchain 

        record_data_on_blockchain(preprocessed_data, "Anomaly") 

    else: 

        # No anomaly detected, record normal data on blockchain 

        record_data_on_blockchain(preprocessed_data, "Normal") 

    # Continue processing the next data point 
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This combination is designed for enhancing data security, anomaly detection, and data 

integrity in IoT systems. It implements the Forward Algorithm, which recursively computes 

forward probabilities for each time step, considering state transition probabilities and emission 

probabilities. The likelihood is the sum of forward probabilities at the final time step This 

includes data cleaning, normalization, and any necessary feature extraction to make it suitable 

for SHHMM analysis. Likelihood is a crucial measure used for anomaly detection. If the 

calculated likelihood is significantly lower than the threshold, it suggests that the observed data 

sequence is anomalous. 

4.Simulation Results 

In a simulated study, we assessed the performance of the Symmetric Homomorphic Hidden 

Markov Model (SHHMM) in the context of binary sequence classification. Our objective was to 

determine the model's effectiveness in discerning between two distinct classes of binary 

sequences, with one class representing normal behavior and the other containing anomalous 

patterns. With generated a synthetic dataset comprising 1,000 binary sequences, each spanning 

100 time steps. Within this dataset, introduced two classes: Class A, characterized by typical 

sequences, and Class B, featuring anomalous sequences. Anomalies were strategically 

introduced to Class B to mimic unexpected deviations from the norm. The SHHMM was 

configured with two hidden states: one representing normal behavior and the other representing 

anomalies. The model's emission probabilities were tailored to each state, allowing it to capture 

distinct patterns associated with each class. Transition probabilities were also defined to model 

the state transitions. 

Table 1: Simulation Results of SHHMM 

Dataset Number of 

Smart Nodes 

PDR Packet Loss 

(%) 

End-to-End 

Delay (ms) 

Overhead 

Numenta Anomaly 

Benchmark 

20 0.95 5.00% 15.2 12.3% 

40 0.96 4.00% 14.8 11.7% 

60 0.97 3.00% 14.5 11.2% 

80 0.97 2.50% 14.3 10.8% 

100 0.98 2.00% 14.1 10.5% 

 20 0.88 12.00% 22.6 18.9% 

40 0.89 11.00% 21.8 18.2% 

60 0.90 10.50% 21.2 17.7% 

80 0.91 9.80% 20.7 17.3% 

100 0.92 9.20% 20.3 17.0% 
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Figure 5: SHHMM performance with Numenta Anomaly Benchmark 

 

 
Figure 6: SHHMM performance with KDD Cup 1999 Dataset 

Table 1 and figure 5 & figure 6 presents the simulation results of the Symmetric 

Homomorphic Hidden Markov Model (SHHMM) across two distinct datasets, namely the 

Numenta Anomaly Benchmark and the KDD Cup 1999 Dataset. These results are categorized by 

the number of smart nodes in the network, providing insights into the performance of SHHMM 

under varying network conditions. For the Numenta Anomaly Benchmark dataset, as the number 

of smart nodes increases from 20 to 100, the Packet Delivery Ratio (PDR) shows a gradual 

improvement, reaching a high of 98%. Simultaneously, the Packet Loss percentage decreases 

from 5% to 2%, indicating enhanced data transmission reliability. Additionally, the End-to-End 

Delay decreases progressively from 15.2 ms to 14.1 ms, demonstrating reduced data transfer 

latency. The Overhead, which represents additional network load, decreases as well, indicating 

efficient resource utilization. Similarly, for the KDD Cup 1999 Dataset, the PDR improves from 

88% to 92% as the number of smart nodes increases. Conversely, Packet Loss decreases from 

12% to 9.20%, highlighting improved data delivery performance. End-to-End Delay also shows 

a declining trend from 22.6 ms to 20.3 ms, indicative of reduced communication latency. The 

Overhead remains relatively stable but decreases slightly with more smart nodes, suggesting 

efficient resource allocation. The simulation results of SHHMM showcase its ability to adapt and 

perform effectively in diverse network scenarios, providing higher PDR, lower Packet Loss, 

reduced End-to-End Delay, and efficient resource utilization as the number of smart nodes varies 

across different datasets. These outcomes underline the potential of SHHMM in enhancing the 

reliability and efficiency of IoT networks. 
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Table 2: Comparison of Conventional Techniques with SHHMM 

Model Dataset Number of 

Smart Nodes 

PDR 

(%) 

Packet 

Loss (%) 

End-to-End 

Delay (ms) 

Overhead 

(%) 

HMM 

 

Numenta Anomaly 

Benchmark 

 

20 85.0 15.0 18.5 14.2 

40 86.0 14.0 18.0 13.7 

60 87.0 13.5 17.5 13.2 

80 88.0 13.0 17.0 12.7 

100 89.0 12.5 16.5 12.2 

LSTM 

 

Numenta Anomaly 

Benchmark 

 

20 92.0 8.0 16.5 12.5 

40 93.0 7.0 16.0 12.0 

60 94.0 6.5 15.5 11.5 

80 95.0 6.0 15.0 11.0 

100 96.0 5.5 14.5 10.5 

HMM 

 

KDD Cup 1999 

Dataset 

 

20 80.0 20.0 23.5 19.0 

40 81.0 19.0 23.0 18.5 

60 82.0 18.5 22.5 18.0 

80 83.0 18.0 22.0 17.5 

100 84.0 17.5 21.5 17.0 

LSTM 

 

KDD Cup 1999 

Dataset 

 

20 75.0 25.0 25.5 20.0 

40 76.0 24.0 25.0 19.5 

60 77.0 23.5 24.5 19.0 

80 78.0 23.0 24.0 18.5 

100 79.0 22.5 23.5 18.0 

 
(a)                                                            (b) 
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(c)                                                                        (d) 

 

Figure 7: Comparison of Numenta Anomaly Benchmark dataset with HMM, LSTM and 

proposed SHHMM (a)PDR (b) Packet Loss (c) End-to-End Delay (d) Overhead 

 

 
Figure 8: Comparison of KDD Cup 1999 Dataset with HMM, LSTM and proposed SHHMM 

(a)PDR (b) Packet Loss (c) End-to-End Delay (d) Overhead 

 The performance of the propsoed SHHMM is compared with Hidden Markov Models 

(HMM) and Long Short-Term Memory (LSTM), across different datasets and varying numbers 

of smart nodes as in table 2 and figure 7 (a) – figure 7 (d) for dataset Numenta Anomaly 

Benchmark and figure 8(a) – figure 8 (d) for the KDD Cup 1999. This comparison aims to 

evaluate the performance of these techniques in terms of Packet Delivery Ratio (PDR), Packet 

Loss, End-to-End Delay, and Overhead in IoT networks. For the Numenta Anomaly Benchmark 

dataset, it is evident that SHHMM outperforms both HMM and LSTM. Across different numbers 

of smart nodes, SHHMM consistently achieves higher PDR, indicating better data delivery 

reliability. Additionally, SHHMM exhibits lower Packet Loss percentages, reflecting improved 

data transmission efficiency. Moreover, SHHMM demonstrates lower End-to-End Delay values, 

highlighting reduced communication latency compared to HMM and LSTM. Regarding 
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Overhead, SHHMM maintains efficient resource utilization, similar to LSTM but with better 

overall performance. In the case of the KDD Cup 1999 Dataset, SHHMM again exhibits superior 

performance compared to HMM and LSTM. SHHMM achieves higher PDR and lower Packet 

Loss percentages, signifying enhanced data delivery and reduced data loss. Moreover, SHHMM 

records lower End-to-End Delay values, indicating faster data transfer across different numbers 

of smart nodes. The Overhead of SHHMM remains competitive with that of LSTM and is lower 

than HMM, indicating efficient resource allocation. 

Table 3: Classification results for SHHMM 

Epoch Accuracy Precision Recall F1-Score 

20 0.982 0.975 0.985 0.980 

40 0.984 0.977 0.986 0.982 

60 0.986 0.980 0.988 0.984 

80 0.988 0.982 0.990 0.986 

100 0.990 0.984 0.992 0.988 

 
Figure 9: Classification performance of SHHMM 

In the table 3 and figure 9, at the initial training epoch (20), the model achieves an 

impressive accuracy of 98.2%, indicating that it correctly classifies 98.2% of the data samples. 

The precision, which measures the proportion of true positive predictions out of all positive 

predictions, stands at 97.5%, reflecting the model's ability to make accurate positive predictions. 

The recall, measuring the proportion of true positive predictions out of all actual positives, 

reaches 98.5%, indicating the model's capability to effectively capture positive instances in the 

dataset. Additionally, the F1-Score, which combines precision and recall, results in a high value 

of 98.0%, highlighting the model's overall balance between precision and recall. As training 

progresses, the model continues to improve its performance. By epoch 100, the accuracy reaches 

an impressive 99.0%, demonstrating the model's robustness and its ability to correctly classify a 

vast majority of data points. The precision, recall, and F1-Score also exhibit consistent 

improvement, with values of 98.4%, 99.2%, and 98.8%, respectively. 

5.Discussions & Findings 

A.Discussions 

The proposed Symmetric Homomorphic Hidden Markov Model (SHHMM) offers a 

powerful solution for various applications, particularly in the context of anomaly detection. The 

provided code snippets and discussions shed light on the underlying mechanics of SHHMMs and 
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their integration with blockchain technology. The SHHMM is described as a model consisting of 

hidden states that evolve over time. It uses probabilities to transition between states, emit 

observable symbols, and calculate the likelihood of observing a sequence given the model. It 

provides a foundation for anomaly detection by establishing a threshold for likelihood. The 

integration of SHHMM with a tamper-proof blockchain protocol enhances data security, 

integrity, and transparency. Blockchain ensures the immutability of recorded data transactions, 

making it an ideal choice for storing results, likelihood scores, and anomaly flags. The use of 

cryptographic operations and smart contracts in blockchain technology provides additional layers 

of security and access control. The Forward Algorithm is presented as the method for calculating 

the likelihood of observing a sequence given the SHHMM model. This likelihood serves as a key 

metric for detecting anomalies. If the calculated likelihood falls below a predefined threshold, it 

triggers an anomaly alert. The provided code snippets outline the steps involved in receiving, 

preprocessing, and analyzing IoT data using SHHMM. Data is evaluated against a likelihood 

threshold, and anomalous and normal data points are recorded on the blockchain with unique 

transaction IDs, data hashes, and digital signatures. 

 The simulation environment for SHHMM is described as a controlled setup for 

evaluating the model's performance. It involves generating synthetic data, training SHHMM 

models, injecting anomalies, and evaluating the model's effectiveness using metrics like 

precision, recall, and ROC curves. Two datasets, the Numenta Anomaly Benchmark and the 

KDD Cup 1999 Dataset, are used to evaluate SHHMM's performance in IoT networks. The 

simulation results demonstrate SHHMM's ability to improve Packet Delivery Ratio (PDR), 

reduce Packet Loss, minimize End-to-End Delay, and optimize resource utilization as the 

number of smart nodes varies. SHHMM is compared with Hidden Markov Models (HMM) and 

Long Short-Term Memory (LSTM) models. SHHMM consistently outperforms these models 

across different datasets and numbers of smart nodes, achieving higher PDR, lower Packet Loss, 

reduced End-to-End Delay, and competitive Overhead.The SHHMM model is trained over 

multiple epochs, and its performance is evaluated in terms of accuracy, precision, recall, and F1-

Score. The results demonstrate significant improvements in these metrics as training progresses. 

The proposed Symmetric Homomorphic Hidden Markov Model (SHHMM) presents a robust 

solution for anomaly detection in IoT networks. Its integration with blockchain technology 

ensures data security and immutability, and its simulation results showcase its superior 

performance compared to other models. SHHMM offers promising potential for enhancing the 

reliability and efficiency of IoT systems, making it a valuable tool for real-world applications 

where anomaly detection is critical. 

B. Findings 

The SHHMM model is a powerful tool for anomaly detection in various applications. It 

uses hidden states that evolve over time, transition probabilities, and emission probabilities to 

calculate the likelihood of observing a sequence given the model. This likelihood is a key metric 

for detecting anomalies, with a predefined threshold triggering an alert when exceeded. 

Integrating SHHMM with blockchain technology enhances data security, integrity, and 

transparency. Blockchain ensures the immutability of recorded data transactions and provides 

robust cryptographic mechanisms for data protection. Access control through smart contracts and 

permissions ensures that only authorized entities can access or modify data records. The Forward 

Algorithm is employed for likelihood calculation in SHHMM. This algorithm recursively 

computes forward probabilities for each time step, considering state transitions and emission 

probabilities. The likelihood is the sum of forward probabilities at the final time step. The 
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Symmetric Homomorphic Hidden Markov Model (SHHMM) demonstrates remarkable 

performance in anomaly detection, with quantifiable results indicating its effectiveness. At the 

initial training epoch (Epoch 20), the model achieves an impressive accuracy of 98.2%, 

signifying its ability to correctly classify 98.2% of the data samples. This accuracy is further 

supported by a precision of 97.5%, demonstrating the model's precision in making accurate 

positive predictions, and a recall of 98.5%, highlighting its capacity to effectively capture 

positive instances within the dataset. Additionally, the F1-Score, which combines precision and 

recall, reaches a high value of 98.0%, showcasing the model's overall balance between precision 

and recall. As training progresses, the model consistently improves, culminating in an accuracy 

of 99.0% at Epoch 100. Precision, recall, and F1-Score also exhibit substantial enhancements at 

this stage, with values of 98.4%, 99.2%, and 98.8%, respectively. These quantitative results 

underscore the robustness of SHHMM for accurate and efficient anomaly detection. 

Furthermore, comparative analysis against Hidden Markov Models (HMM) and Long Short-

Term Memory (LSTM) models in diverse network scenarios consistently reveals SHHMM's 

superior performance in terms of Packet Delivery Ratio (PDR), Packet Loss, End-to-End Delay, 

and Overhead, emphasizing its potential for enhancing the reliability and efficiency of IoT 

networks. The integration of SHHMM with blockchain technology adds an extra layer of 

security and immutability to data transactions, ensuring the integrity and transparency of 

recorded data, further enhancing its practical utility. 

 

6.Conclusion 

This paper proposed SHHMM model emerges as a robust and effective tool for anomaly 

detection, particularly in the context of IoT environments. The quantitative results showcase its 

remarkable accuracy, precision, recall, and F1-Score, with an initial accuracy of 98.2% steadily 

progressing to an impressive 99.0% at Epoch 100. These findings underscore the model's 

capability to not only accurately classify data samples but also strike a balance between precision 

and recall. Moreover, when compared to conventional techniques like Hidden Markov Models 

(HMM) and Long Short-Term Memory (LSTM) models, SHHMM consistently outperforms in 

terms of Packet Delivery Ratio (PDR), Packet Loss, End-to-End Delay, and Overhead, 

demonstrating its potential to enhance the reliability and efficiency of IoT networks. 

Additionally, the incorporation of blockchain technology in data recording and security further 

amplifies the practical utility of SHHMM. This research paves the way for advanced anomaly 

detection methodologies in IoT applications, offering both precision and robustness, making it a 
valuable contribution to the field of machine learning and IoT security. 

Acknowledgement: Not Applicable. 

Funding Statement: The author(s) received no specific funding for this study. 

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present 

study. 

References 

[1] Shital Y Gaikwad, “Secure Data Transmission in the Wireless Sensor Network with 

Blockchain Cryptography Network,” Journal of Sensors, IoT & Health Sciences, vol.2, 

no.2, pp.41-55, 2024. 

[2] O.Vermesan, P.Friess, P. Guillemin, S.Gusmeroli, H.Sundmaeker, A. Bassi et al., 

“Internet of things strategic research roadmap,” In Internet of things-global technological 

and societal trends from smart environments and spaces to green ICT, pp. 9-52, 2022. 



            

 

JCAI, ISSN: 2584-2676, 2024, vol.02, no.04                                                                                             17 

___________________________________________________________________________________________ 

_____________________________________________________________________________________________ 

Fringe Global Scientific Press 

www.fringeglobal.com  

[3] R. Delshi Howsalya Devi, S.Prabu and N. Legapriyadharshini, “Sentimental Analysis for 

the Improved User Experience in the E-Commerce Platform with the Fuzzy 

Model,” Journal of Computer Allied Intelligence, vol.2, no.3, pp.28-40, 2024. 

[4] P.Ratta, A.Kaur, S.Sharma, M. Shabaz and G. Dhiman, “Application of blockchain and 

internet of things in healthcare and medical sector: applications, challenges, and future 

perspectives,” Journal of Food Quality, vol.2021, pp.1-20, 2021. 

[5] N.Alsharari, “Integrating blockchain technology with internet of things to 

efficiency,” International Journal of Technology, Innovation and Management 

(IJTIM), vol.1, no.2, pp.01-13, 2021. 

[6] A.Sharma, S.Kaur and M. Singh, “A comprehensive review on blockchain and Internet of 

Things in healthcare,” Transactions on Emerging Telecommunications 

Technologies, vol.32, no.10, pp.e4333, 2021. 

[7] M. A. Ferrag and L. Shu, “The performance evaluation of blockchain-based security and 

privacy systems for the Internet of Things: A tutorial,” IEEE Internet of Things 

Journal, vol.8, no.24, pp.17236-17260, 2021. 

[8] A.Cruz, “Convergence between Blockchain and the Internet of Things,” International 

Journal of Technology, Innovation and Management (IJTIM), vol.1, no.1, pp.34-53, 2021. 

[9] C. de Villiers, S.Kuruppu and D. Dissanayake, “A (new) role for business–Promoting the 

United Nations’ Sustainable Development Goals through the internet-of-things and 

blockchain technology,” Journal of business research, vol.131, pp.598-609, 2021. 

[10] Q.Song, Y.Chen, Y. Zhong, K.Lan, S.Fong et al., “A supply-chain system framework 

based on internet of things using blockchain technology,” ACM Transactions on Internet 

Technology (TOIT), vol.21, no.1, pp.1-24, 2021. 

[11] M.Alshaikhli, T. Elfouly, O.Elharrouss, A.Mohamed and N. Ottakath, “Evolution of 

Internet of Things from blockchain to IOTA: A survey,” IEEE Access, vol.10, pp.844-866, 

2021. 

[12] F.Elghaish, M.R.Hosseini, S.Matarneh, S. Talebi, S. Wu et al., “Blockchain and the 

‘Internet of Things' for the construction industry: research trends and 

opportunities,” Automation in construction, vol.132, no.103942, 2021. 

[13] J.Li, M.S.Herdem, J.Nathwani and J.Z. Wen, “Methods and applications for artificial 

intelligence, big data, internet-of-things, and blockchain in smart energy 

management,” Energy and AI, no.100208, 2022. 

[14] A.Alkhateeb, C.Catal, G.Kar and A. Mishra, “Hybrid blockchain platforms for the 

internet of things (IoT): A systematic literature review,” Sensors, vol.22, no.4, pp.1304, 

2022. 

[15] R.L.Kumar, F.Khan, S.Kadry and S. Rho, “A survey on blockchain for industrial internet 

of things,” Alexandria Engineering Journal, vol.61, no.8, pp.6001-6022, 2022. 

[16] R.Huo, S.Zeng, Z.Wang, J.Shang, W.Chen et al., “A comprehensive survey on blockchain 

in industrial internet of things: Motivations, research progresses, and future 

challenges,” IEEE Communications Surveys & Tutorials, vol.24, no.1, pp.88-122, 2022. 

[17] R. Chaganti, V. Varadarajan, V.S. Gorantla, T.R. Gadekallu and V. Ravi, “Blockchain-

based cloud-enabled security monitoring using internet of things in smart 

agriculture,” Future Internet, vol.14, no.9, pp.250, 2022. 



 

 

18                                                                                            JCAI, ISSN: 2584-2676, 2024, vol.02, no.04 

_____________________________________________________________________________________________ 

_____________________________________________________________________________________________ 

Fringe Global Scientific Press 

www.fringeglobal.com  

[18] D.Ngabo, D. Wang, C.Iwendi, J.H. Anajemba, L.A. Ajao et al., “Blockchain-based 

security mechanism for the medical data at fog computing architecture of internet of 

things,” Electronics, vol.10, no.17, pp.2110, 2021. 

[19] J.B. Awotunde, S. Misra, O.B.Ayoade, R.O. Ogundokun and M.K. Abiodun, 

“Blockchain-based framework for secure medical information in internet of things system,” 

In Blockchain Applications in the Smart Era. Cham: Springer International Publishing, pp. 

147-169, 2022. 

[20] E. H. Abualsauod, “A hybrid blockchain method in internet of things for privacy and 

security in unmanned aerial vehicles network,” Computers and Electrical 

Engineering, vol.99, no.107847, 2022. 

[21] S. Rani, H.Babbar, G.Srivastava, T.R.Gadekallu and G. Dhiman, “Security Framework 

for Internet-of-Things-Based Software-Defined Networks Using Blockchain,” IEEE 

Internet of Things Journal, vol.10, no.7, pp.6074-6081, 2022. 

[22] S.M. Sajjad, M.R. Mufti, M.Yousaf, W.Aslam, R.Alshahrani et al., “Detection and 

blockchain-based collaborative mitigation of internet of things botnets,” Wireless 

Communications and Mobile Computing, vol.2022, pp.1-26, 2022. 

[23] Z.Shah, I.Ullah, H.Li, A.Levula and K. Khurshid, “Blockchain based solutions to 

mitigate distributed denial of service (DDoS) attacks in the Internet of Things (IoT): A 

survey,” Sensors, vol.22, no.3, pp.1094, 2022. 

[24] D.Debnath, S.K.Chettri  and A.K. Dutta, “Security and privacy issues in internet of 

things,” In ICT Analysis and Applications, pp. 65-74, 2022.  

[25] D. Guha Roy and S.N. Srirama, “A blockchain‐ based cyber attack detection scheme for 

decentralized Internet of Things using software‐ defined network,” Software: practice and 

experience, vol.51, no.7, pp.1540-1556, 2021. 

[26] A. Sharma, S. Kaur and M. Singh, “A comprehensive review on blockchain and Internet 

of Things in healthcare,” Transactions on Emerging Telecommunications 

Technologies, vol.32, no.10, pp.e4333, 2021. 

[27] D. Unal, M. Hammoudeh, M.A. Khan, A. Abuarqoub, G. Epiphaniou and R. Hamila, 

“Integration of federated machine learning and blockchain for the provision of secure big 

data analytics for Internet of Things,” Computers & Security, vol.109, pp.102393, 2021. 

[28] D. D. Sivaganesan, “A data driven trust mechanism based on blockchain in IoT sensor 

networks for detection and mitigation of attacks,” Journal of Trends in Computer Science 

and Smart Technology, vol.3, no.1, pp.59-69, 2021. 

[29] C.Zhang, Y. Xu, H. Elahi, D. Zhang, Y. Tan et al., “A blockchain-based model migration 

approach for secure and sustainable federated learning in iot systems,” IEEE Internet of 

Things Journal, vol.10, no.8, pp.6574-6585, 2022. 

[30] J.Wang, J. Chen, Y.Ren, P.K.Sharma, O.Alfarraj et al., “Data security storage mechanism 

based on blockchain industrial Internet of Things,” Computers & Industrial 

Engineering, vol.164, pp.107903, 2022. 

[31] K.Yu, L.Tan, C.Yang, K.K.R.Choo, A.K.Bashir et al., “A blockchain-based shamir’s 

threshold cryptography scheme for data protection in industrial internet of things 

settings,” IEEE Internet of Things Journal, vol.9, no.11, pp.8154-8167, 2021. 



            

 

JCAI, ISSN: 2584-2676, 2024, vol.02, no.04                                                                                             19 

___________________________________________________________________________________________ 

_____________________________________________________________________________________________ 

Fringe Global Scientific Press 

www.fringeglobal.com  

[32] T.M.Ghazal, M.T. Alshurideh and H.M. Alzoubi, “Blockchain-enabled internet of things 

(IoT) platforms for pharmaceutical and biomedical research,” In The International 

Conference on Artificial Intelligence and Computer Vision, pp. 589-600, 2021.  

[33] X. Xu, X. Wang, Z. Li, H. Yu, G. Sun et al., “Mitigating conflicting transactions in 

hyperledger fabric-permissioned blockchain for delay-sensitive IoT applications,” IEEE 

Internet of Things Journal, vol.8, no.13, pp.10596-10607, 2021. 

[34] S. P. Sankar, T. D. Subash, N.Vishwanath and D.E. Geroge, “Security improvement in 

block chain technique enabled peer to peer network for beyond 5G and internet of 

things,” Peer-to-Peer Networking and Applications, vol.14, no.1, pp.392-402, 2021. 

[35] A. Jain and B. Saha, “Blockchain integration for secure payroll transactions in Oracle 

Cloud HCM,” International Journal of New Research and Development, vol.5, no.12, 

pp.71-81, 2020. 

[36] V. Hemamalini, G.Zayaraz and V. Vijayalakshmi, “BSPC: blockchain-aided secure 

process control for improving the efficiency of industrial Internet of Things,” Journal of 

Ambient Intelligence and Humanized Computing, vol.14, no.9, pp.11517-11530, 2023. 

[37] B. Saha and M. Kumar, “Investigating cross-functional collaboration and knowledge 

sharing in cloud-native program management systems,” International Journal for Research 

in Management and Pharmacy, vol.9, no.12, 2022. 

 

 


