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Abstract: In an era characterized by the proliferation of Internet of Things (IoT) devices and the critical 
importance of data integrity, the need for robust security mechanisms has never been greater. This paper 
introduces a novel "Secure Tamper Protocol Model" (STPM) integrated with an IoT-based blockchain 
architecture, designed to address the growing challenges of data mitigation in IoT ecosystems. This research 
explores the application of Symmetric Homomorphic Hidden Markov Models (SHHMMs) in the context 
of anomaly detection, with a focus on %G - IoT environments. SHHMMs have shown remarkable promise 
in accurately identifying anomalies within diverse datasets. The study presents numerical findings 
indicating the model's high accuracy, precision, recall, and F1-Score, with an initial accuracy of 98.2% 
reaching 99.0% at Epoch 100. Comparative analysis against traditional methods like Hidden Markov 
Models (HMM) and Long Short-Term Memory (LSTM) models consistently highlights SHHMM's superior 
performance, demonstrated through Packet Delivery Ratio (PDR), Packet Loss, End-to-End Delay, and 
Overhead metrics. The integration of blockchain technology further enhances the practicality of SHHMM 
in ensuring data integrity and security. This research contributes to the advancement of anomaly detection 
techniques in 5G- IoT applications, offering a blend of precision and robustness. 
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1 Introduction  

The Internet of Things (IoT) is a revolutionary concept that has permeated nearly every facet 

of modern life. It entails the interconnection of a diverse range of physical objects or "things" 

through the internet, endowing them with the ability to communicate and exchange data with one 

another [1]. These objects span from everyday devices like smartphones, thermostats, and home 

appliances to complex industrial machinery and environmental sensors. What sets IoT apart is its 

capacity to enable these devices to collect data, process it either locally or in the cloud, and 

subsequently trigger actions or responses, often without direct human involvement [2]. This 

connectivity and automation bring about unparalleled convenience, efficiency, and new 

opportunities across various industries [3]. IoT's promise lies in its potential to enhance our lives 

through smart cities, autonomous vehicles, remote healthcare monitoring, and countless other 

applications, all while fostering interoperability and scalability in our increasingly connected 
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world. Blockchain is a revolutionary and decentralized digital ledger technology that has gained 

significant attention and popularity in recent years. Blockchain's role on the Internet of Things 

(IoT) is pivotal, primarily for its ability to fortify security and trust within the IoT ecosystem [4]. 

By employing a decentralized ledger, blockchain ensures that data generated by IoT devices 

remains tamper-resistant and immutable. This heightened security safeguards against unauthorized 

access and data manipulation, instilling confidence in the integrity of IoT networks [5]. 

Furthermore, blockchain's capacity for managing device identities and access control enhances 

IoT security. Each IoT device can possess a unique, verifiable identity stored securely on the 

blockchain, enabling robust authentication and authorization [6]. Smart contracts, another feature 

of blockchain, enable the automation of processes and actions based on real-time data, allowing 

IoT devices to operate autonomously and efficiently [7]. The decentralized nature of blockchain 

also reduces the vulnerability of single points of failure in IoT networks, enhancing their resilience. 

In addition to security, blockchain facilitates data monetization, fosters interoperability among 

diverse devices, and optimizes supply chain management by providing transparency and 

traceability [8]. Blockchain plays a fundamental role in elevating the security, efficiency, and 

trustworthiness of IoT applications across various industries. 

Data mitigation in IoT (Internet of Things) is a critical process aimed at efficiently managing 

the deluge of data generated by IoT devices [9]. In the IoT ecosystem, devices continuously 

produce vast volumes of data, and handling this influx is paramount for optimizing storage, 

transmission, and processing [10]. To achieve this, data filtering mechanisms are employed to sift 

through and transmit only relevant information, while data compression techniques reduce the size 

of data packets, conserving precious bandwidth and reducing transfer costs [11]. Additionally, data 

aggregation consolidates information over time or based on specific conditions, lessening the 

burden of transmitting granular data. Edge computing further aids in data mitigation by enabling 

localized processing, reducing the necessity to transfer large volumes of data to centralized servers 

[12]. Establishing data retention policies, implementing lifecycle management strategies, ensuring 

data security, and leveraging advanced analytics all contribute to the efficient management of IoT-

generated data, ensuring that it remains a valuable asset rather than an overwhelming liability [13]. 

Integrating the Internet of Things (IoT) with blockchain technology holds immense promise, but 

it also comes with a set of complex issues concerning data mitigation. One of the foremost 

challenges is scalability, as blockchain networks can struggle to handle the enormous volume of 

transactions generated by IoT devices, potentially leading to congestion and latency [14]. 

Additionally, the sheer volume of data produced by IoT devices poses a storage dilemma, 

necessitating strategies to select, aggregate, or summarize data before committing it to the 

blockchain [15]. The latency inherent in blockchain consensus processes may not align with the 

real-time demands of IoT applications, and transaction costs can become prohibitive in high-

frequency environments. Achieving interoperability among diverse IoT ecosystems, preserving 

data privacy, selecting the appropriate consensus mechanism, ensuring regulatory compliance, and 

addressing energy efficiency concerns are all pivotal issues that must be carefully navigated to 

harness the full potential of IoT integrated with blockchain [16]. Successful data mitigation 

strategies in this context require a nuanced and adaptive approach tailored to specific use cases 

and evolving blockchain technologies. 

Internet of Things (IoT) with blockchain technology is a powerful concept but presents a 

complex landscape of challenges in data mitigation [17]. Scalability concerns arise due to 
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blockchain networks struggling to handle the sheer volume of IoT-generated transactions, 

potentially causing delays. Additionally, the vast amounts of data produced by IoT devices require 

efficient strategies for selection, aggregation, or summarization before being recorded on the 

blockchain [18]. The inherent latency in blockchain consensus processes might not align with real-

time IoT requirements, and transaction costs can become prohibitive [19]. Ensuring 

interoperability across diverse IoT ecosystems, preserving data privacy, selecting appropriate 

consensus mechanisms, addressing regulatory compliance, and dealing with energy efficiency are 

crucial issues that demand careful navigation [20]. Effective data mitigation strategies in this 

context must be tailored to specific use cases and evolving blockchain technologies while 

balancing the demands of data integrity, cost-efficiency, and real-time responsiveness. Security 

issues and challenges on the Internet of Things (IoT) ecosystem are multifaceted and demand 

significant attention [21]. IoT devices, often constrained by resource limitations, are susceptible to 

vulnerabilities that can be exploited by malicious actors. The vast amounts of sensitive data 

collected by these devices, coupled with inadequate data protection measures, make data breaches 

a serious concern. Network security is also paramount, as IoT devices communicate over 

potentially vulnerable wireless networks [22]. Weak authentication mechanisms and poor device 

management practices can lead to unauthorized access, while physical security threats when 

attackers gain physical access to devices. Moreover, the use of compromised IoT devices in botnets 

for DDoS attacks poses a considerable threat [23]. The absence of uniform security standards, 

supply chain vulnerabilities, and regulatory compliance complexities further exacerbate the 

security landscape [24]. Addressing these challenges necessitates a holistic approach, including 

secure device design, robust network security, vigilant monitoring, and ongoing threat detection, 

along with collaboration among stakeholders, regulatory initiatives, and industry-wide efforts to 

establish comprehensive security measures in IoT [25]. Blockchain serves as a robust security 

enabler in IoT applications by bolstering data integrity, authentication, and privacy in the 

interconnected world of devices. Through its immutable and tamper-resistant ledger, blockchain 

safeguards data integrity, assuring that the information generated by IoT devices remains unaltered 

and trustworthy. Blockchain's ability to establish unique cryptographic identities for IoT devices 

enhances authentication and access control, mitigating the risk of unauthorized access or device 

impersonation [26]. Secure transactions and smart contracts executed on the blockchain create 

transparency and eliminate the need for intermediaries in IoT ecosystems, reducing the attack 

surface. Decentralization in blockchain networks enhances resilience to attacks, while privacy-

enhancing technologies protect sensitive data. This technology also aids in auditing security and 

compliance, ensuring that security policies and regulations are consistently met [27]. Moreover, 

blockchain's potential to securely manage firmware updates and ensure supply chain security adds 

layers of protection to IoT deployments. In essence, blockchain bolsters the security and 

trustworthiness of IoT applications, addressing critical security challenges in an increasingly 

connected world. 

The paper introduces a novel architecture that combines Internet of Things (IoT) technology 

with blockchain technology. This architecture addresses the challenges of secure data mitigation 

in IoT systems, ensuring the integrity and confidentiality of data transmitted within IoT networks. 

Firstly, it introduces an innovative IoT blockchain architecture designed to tackle the pressing 

issue of secure data mitigation in IoT networks. This architecture incorporates the Symmetric 

Homomorphic Hidden Markov Model (SHHMM) as a key element, enabling secure data 
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processing and mitigation while preserving data privacy. One of the key contributions of this 

research lies in its ability to ensure data integrity within IoT systems. With leveraging blockchain 

technology, the paper establishes a tamper-proof ledger that records all IoT data transactions, 

guaranteeing the immutability and trustworthiness of the data throughout its lifecycle. 

Furthermore, the paper conducts thorough simulations and performance evaluations to substantiate 

the effectiveness of the proposed architecture. It provides empirical evidence through metrics such 

as Packet Delivery Ratio (PDR), Packet Loss, End-to-End Delay, and Overhead, showcasing the 

advantages of the SHHMM-based approach in enhancing data security and mitigating conflicting 

data in IoT applications. 

2 IoT Blockchain Architecture 

The architecture of an IoT blockchain system is a complex framework that orchestrates the 

interaction between IoT devices and a blockchain network. IoT devices, such as sensors and smart 

appliances, gather data from the physical world and often require a secure means of transmitting 

this data to the blockchain.[28] The core of this architecture is the blockchain network, which can 

be either a public or private blockchain, where transactions and smart contracts are recorded. Smart 

contracts play a pivotal role in automating actions based on the data collected by IoT devices, 

enabling conditional execution of processes. To bridge the gap between IoT devices and the 

blockchain, an IoT data gateway or intermediary layer is commonly used to collect, process, and 

transmit data securely. Robust identity and access management systems are crucial to ensure the 

security and privacy of data, with each IoT device having a unique identity on the blockchain. 

Security features such as encryption, digital signatures, and secure communication protocols 

safeguard data integrity[29-33]. Scalability solutions address the challenge of handling the 

immense volume of IoT data. Additionally, device management, user interfaces, monitoring tools, 

and analytics components complete the architecture, facilitating efficient device control, human 

interaction, system oversight, and data analysis[34]. The architecture's flexibility and design may 

vary depending on the specific use case, but its overarching purpose is to create a resilient, secure, 

and efficient environment for IoT devices to interact seamlessly with blockchain technology, 

unlocking new opportunities in data management and automation as illustrated in figure 1. 

 
Figure 1: Tamper Protocol Model 

IoT blockchain architecture for the Symmetric Homomorphic Hidden Markov (SHHMM)" 

represents a sophisticated integration of Internet of Things (IoT) technology, blockchain 

technology, and Symmetric Homomorphic Hidden Markov Models (SHHMMs) to address 

specialized data analysis and security needs. In this framework, IoT devices gather data, which 
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may be sequential and sensor-based, and this data undergoes preprocessing to ensure its readiness 

for analysis[35]. The data is then securely transmitted to a blockchain network, where its integrity 

and immutability are guaranteed. The key innovation lies in the application of SHHMMs, a 

mathematical modeling technique, for analyzing this IoT data within the blockchain context. These 

models, designed for specific tasks, facilitate advanced data analysis and predictions. Additionally, 

smart contracts on the blockchain can automate actions based on SHHMM outcomes, enabling 

real-time decision-making. The architecture would likely incorporate encryption measures to 

protect sensitive IoT data, and robust access control mechanisms to ensure only authorized entities 

can access and interact with the data. While highly specialized, this architecture has the potential 

to revolutionize various domains, from industrial predictive maintenance to healthcare analytics, 

by combining the power of IoT, blockchain's security, and SHHMMs' data analysis capabilities. 

This is a simplified illustration of the symmetric homomorphic property, where 

mathematical operations (addition in this case) are performed on encrypted data, and the result is 

consistent with the unencrypted sum. The process and flow of the HMM model is presented in 

figure 2. 

 
Figure 2: Flow of HMM 

Theorem 1: Secure State Transition Computation in SHHMM 

In an SHHMM, the secure computation of state transition probabilities can be performed 

collaboratively on encrypted data, ensuring data privacy and preserving the model's accuracy. 

Proof: 

Consider an SHHMM with hidden states {𝑆_1, 𝑆_2, . . . , 𝑆_𝑁}  and state transition 

probabilities {𝑃(𝑆_𝑖 →  𝑆_𝑗)}  for all state pairs (𝑆_𝑖, 𝑆_𝑗) . Each party holds encrypted state 

transition probabilities, represented as 𝐸(𝑃(𝑆_𝑖 →  𝑆_𝑗)) . Utilize homomorphic encryption to 

securely compute the product of these encrypted probabilities: 

Encrypted Product: 𝐸(𝑃(𝑆_1 →  𝑆_2))  ∗  𝐸(𝑃(𝑆_2 →  𝑆_3))  ∗ . . .∗  𝐸(𝑃(𝑆_𝑁 − 1 →
 𝑆_𝑁)) 

Parties collaboratively compute this encrypted product while keeping their data encrypted 

throughout the process. Decrypt the result using the private decryption keys to obtain the joint state 

transition probability: 

Decrypted Product: 𝐷(𝐸(𝑃(𝑆_1 →  𝑆_2))  ∗  𝐸(𝑃(𝑆_2 →  𝑆_3))  ∗ . . .∗  𝐸(𝑃(𝑆_𝑁 − 1 →
 𝑆_𝑁))) 

The decrypted product provides an accurate representation of the joint state transition 

probability, allowing secure collaborative computation while preserving data privacy. This 

theorem illustrates the secure computation of state transition probabilities within an SHHMM, 

enabling privacy-preserving operations on model parameters. 

Theorem 2: Homomorphic Emission Probabilities in SHHMM 
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In an SHHMM, homomorphic encryption can be applied to emission probabilities, allowing 

secure computations on encrypted data while preserving the model's accuracy. 

Proof: 

Consider an SHHMM with observable symbols {𝑂_1, 𝑂_2, . . . , 𝑂_𝑀}  and emission 

probabilities {𝑃(𝑂_𝑖 | 𝑆_𝑗)} for all symbols 𝑂_𝑖 and hidden states 𝑆_𝑗. Each party holds encrypted 

emission probabilities, represented as 𝐸(𝑃(𝑂_𝑖 | 𝑆_𝑗)) . Apply homomorphic encryption to 

securely compute the sum of these encrypted probabilities for a given observable symbol 𝑂_𝑖: 
Encrypted Sum: 𝛴(𝐸(𝑃(𝑂_𝑖 | 𝑆_1)), 𝐸(𝑃(𝑂_𝑖 | 𝑆_2)), . . . , 𝐸(𝑃(𝑂_𝑖 | 𝑆_𝑁))) 

Collaboratively compute this encrypted sum while maintaining data encryption. Decrypt the 

result using the private decryption keys to obtain the joint emission probability for symbol 𝑂_𝑖: 
Decrypted Sum: 𝐷(𝛴(𝐸(𝑃(𝑂_𝑖 | 𝑆_1)), 𝐸(𝑃(𝑂_𝑖 | 𝑆_2)), . . . , 𝐸(𝑃(𝑂_𝑖 | 𝑆_𝑁)))) 

The decrypted sum accurately represents the joint emission probability for symbol O_i, 

enabling secure collaborative computations on emission probabilities without revealing sensitive 

information. Figure 3 illustrated the tamper -proof model with the SHHMM model for the secure 

data transmission in the IoT. 

 
Figure 3: SHHMM model for the Homomorphic Process 

3 Proposed Symmetric Homomorphic Hidden Markov (SHHMM) 

SHHMMs with a tamper-proof blockchain protocol involves complex processes and 

providing a complete set of equations for the entire system is challenging. In the context of 

SHHMMs for anomaly detection, the likelihood calculation can be represented as follows: 

Observation Sequence denoted as 𝑂 =  {𝑂(1), 𝑂(2), . . . , 𝑂(𝑇)}  for the Hidden State 

Sequence represented as 𝑆 =  {𝑆(1), 𝑆(2), . . . , 𝑆(𝑇)}. Likelihood of the Observation Sequence 

Given the SHHMM Model is represented in equation (1) 

𝑃(𝑂 | 𝑆𝐻𝐻𝑀𝑀 𝑀𝑜𝑑𝑒𝑙)  =  𝛴 [𝜋(𝑆(1))  ∗  𝐵(𝑆(1), 𝑂(1))  ∗  𝛱 𝐴(𝑆(𝑡), 𝑆(𝑡 + 1))  ∗
 𝐵(𝑆(𝑡 + 1), 𝑂(𝑡 + 1))]                                                                                                                (1) 

Here: 𝜋(𝑆(1)) represents the initial state probability; 𝐴(𝑆(𝑡), 𝑆(𝑡 + 1)) represents the state 

transition probability; and 𝐵(𝑆(𝑡 + 1), 𝑂(𝑡 + 1))  represents the emission probability. With a 

tamper-proof blockchain protocol involves recording data transactions and actions on the 

blockchain. While the actual blockchain operations use cryptographic algorithms and data 

structures, the high-level concept. A transaction is recorded on the blockchain with a unique 

transaction ID (TxID). Data from SHHMM-based analysis, including likelihood scores and 

anomaly flags, can be recorded as transactions as follows in equation (2) 

 𝑇𝑥𝐼𝐷1: 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 –  𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑆𝑐𝑜𝑟𝑒 𝑓𝑜𝑟 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 1 

           𝑇𝑥𝐼𝐷_2: 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 −  𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝐹𝑙𝑎𝑔 𝑓𝑜𝑟 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 1 
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          𝑇𝑥𝐼𝐷_3: 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 −  𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑆𝑐𝑜𝑟𝑒 𝑓𝑜𝑟 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 2 
         𝑇𝑥𝐼𝐷_4: 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 −  𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝐹𝑙𝑎𝑔 𝑓𝑜𝑟 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 2 

. . . 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛                                                                                                                        (2) 
Once recorded on the blockchain, these transactions are immutable, meaning they cannot be 

altered or deleted. Blockchain often implements access control mechanisms through smart 

contracts or permissions. While not expressed as equations, these mechanisms ensure that only 

authorized users or entities can access or modify specific data records on the blockchain. Alerts 

can be triggered when anomalies are detected by SHHMM analysis. While not represented by 

equations, the blockchain can facilitate the notification process by securely transmitting alerts or 

notifications to relevant stakeholders when significant anomalies are detected. Blockchain's 

transparency ensures that all data-related activities, including data transactions, access requests, 

and updates, are visible and traceable. While not represented as equations, this transparency 

promotes accountability among users and administrators. 

 
Figure 4: Blockchain with SHHMM 

  Blockchain technology involves cryptographic operations, such as hashing and digital 

signatures, to create an immutable and tamper-proof ledger as shown in figure 4. These are used 

to create a unique hash (digest) of data, ensuring that any change in data would result in a different 

hash given in equation (3) 

𝐻𝑎𝑠ℎ(𝐷𝑎𝑡𝑎)  =  𝑈𝑛𝑖𝑞𝑢𝑒_𝐻𝑎𝑠ℎ_𝑉𝑎𝑙𝑢𝑒                                                                             (3) 

 Digital signatures use public-key cryptography to ensure the authenticity and integrity of 

data. The equation for digital signatures involves complex mathematical operations presented in 

equation (4) 

𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =  𝑆𝑖𝑔𝑛(𝐷𝑎𝑡𝑎, 𝑃𝑟𝑖𝑣𝑎𝑡𝑒_𝐾𝑒𝑦)                                                                        (4) 

Blockchain networks use consensus algorithms like Proof of Work (PoW) or Proof of Stake 

(PoS) to validate and add new blocks to the chain. These algorithms involve cryptographic puzzles 

and probabilistic calculations. The integration involves using the likelihood calculated by 
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SHHMMs for anomaly detection. If the calculated likelihood falls below a predefined threshold, 

it may indicate an anomaly conditions as follows 

𝐼𝑓 𝑃(𝑂 | 𝑆𝐻𝐻𝑀𝑀 𝑀𝑜𝑑𝑒𝑙)  <  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 
    𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 

The likelihood of an observation sequence O given an SHHMM model can be computed 

using the Forward Algorithm. With Initialization Step (𝑡 =  1) and Forward Probability 𝛼(1, 𝑖) 

at the first time step for each hidden state 𝑖 denoted in equation (5) 

𝛼(1, 𝑖)  =  𝜋(𝑖)  ∗  𝐵(𝑖, 𝑂(1))                                                                                             (5) 

In above equation (10) 𝜋(𝑖)  represents the initial state probability for state i; 

𝐵(𝑖, 𝑂(1)) represents the emission probability for state i emitting symbol 𝑂(1) with the Recursion 

Step (t > 1). The Forward Probability 𝛼(𝑡, 𝑗) at time step t for each hidden state 𝑗 computed in 

equation (6) 

𝛼(𝑡, 𝑗)  =  𝛴 [𝛼(𝑡 − 1, 𝑖)  ∗  𝐴(𝑖, 𝑗)]  ∗  𝐵(𝑗, 𝑂(𝑡))                                                              (6) 

where: 𝛼(𝑡 − 1, 𝑖) is the forward probability at time step 𝑡 − 1 for state 𝑖; 𝐴(𝑖, 𝑗) represents 

the state transition probability from state i to state j; 𝐵(𝑗, 𝑂(𝑡)) represents the emission probability 

for state j emitting symbol 𝑂(𝑡).  
3.1 Likelihood of the Observation Sequence 

The overall likelihood of the observation sequence O given the SHHMM model is the sum 

of forward probabilities for all hidden states at the final time step T denoted in equation (7) 

𝑃(𝑂 | 𝑆𝐻𝐻𝑀𝑀 𝑀𝑜𝑑𝑒𝑙)  =  𝛴 𝛼(𝑇, 𝑖)                                                                                 (7) 

Blockchain transactions are typically hashed using cryptographic hash functions like SHA-

256 is represented in equation (8) 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝐻𝑎𝑠ℎ =  𝑆𝐻𝐴 − 256(𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝐷𝑎𝑡𝑎)                                               (8) 

where Transaction_Data includes details of the transaction, such as sender, receiver, data, 

and timestamps. Digital signatures ensure the authenticity and integrity of blockchain transactions. 

They involve the use of public and private keys and mathematical operations. The signature 

equation is typically represented as in equation (9) 

𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =  𝑆𝑖𝑔𝑛(𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝐻𝑎𝑠ℎ, 𝑃𝑟𝑖𝑣𝑎𝑡𝑒_𝐾𝑒𝑦)                                                (9) 

Here, Sign is a cryptographic function that uses the private key to generate a unique signature 

for the transaction. Blockchain consensus mechanisms involve mathematical algorithms to 

validate and add new blocks to the chain. With Proof of Work (PoW) uses complex cryptographic 

puzzles where miners solve mathematical problems to create new blocks. 

Algorithm 2: SHHMM Tamper Proof Model 

# Import necessary libraries and modules 

# Define SHHMM model parameters 

initial_state_probabilities = ... 

transition_probabilities = ... 

emission_probabilities = ... 

# Initialize blockchain 

blockchain = Blockchain() 

# Function to calculate likelihood using SHHMM 

def calculate_likelihood(observations): 
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    forward_probabilities = []   

    # Initialization step 

    forward_prob = [] 

    for state in range(num_states): 

        forward_prob.append(initial_state_probabilities[state] * 

emission_probabilities[state][observations[0]]) 

    forward_probabilities.append(forward_prob) 

     # Recursion step 

    for time_step in range(1, len(observations)): 

        forward_prob = [] 

        for state in range(num_states): 

            prev_forward_prob = forward_probabilities[-1] 

            transition_sum = sum(prev_forward_prob[prev_state] * 

transition_probabilities[prev_state][state] for prev_state in range(num_states)) 

            forward_prob.append(transition_sum * 

emission_probabilities[state][observations[time_step]]) 

        forward_probabilities.append(forward_prob) 

       # Calculate the likelihood of the observation sequence 

    likelihood = sum(forward_probabilities[-1]) 

    return likelihood 

# Function to record data on the blockchain 

def record_data_on_blockchain(data, transaction_type): 

    # Generate a unique transaction ID (TxID) 

    txid = generate_unique_txid(data) 

    # Hash the data for inclusion in the blockchain 

    data_hash = hash_data(data) 

    # Sign the transaction using private key 

    signature = sign_transaction(data_hash) 

    # Create a blockchain transaction 

    blockchain_transaction = create_blockchain_transaction(txid, data_hash, signature, 

transaction_type) 

    # Add the transaction to the blockchain 

    blockchain.add_transaction(blockchain_transaction) 

# Main loop for processing incoming IoT data 

while True: 

    # Receive and preprocess IoT data 

    raw_data = receive_data() 
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    preprocessed_data = preprocess_data(raw_data) 

    # Calculate likelihood using SHHMM 

    likelihood = calculate_likelihood(preprocessed_data) 

    # Define a threshold for anomaly detection 

    threshold = 0.001  # Adjust as needed 

    # Check if likelihood is below the threshold 

    if likelihood < threshold: 

        # Anomaly detected, record anomaly data on blockchain 

        record_data_on_blockchain(preprocessed_data, "Anomaly") 

    else: 

        # No anomaly detected, record normal data on blockchain 

        record_data_on_blockchain(preprocessed_data, "Normal") 

    # Continue processing the next data point 

This combination is designed for enhancing data security, anomaly detection, and data 

integrity in IoT systems. It implements the Forward Algorithm, which recursively computes 

forward probabilities for each time step, considering state transition probabilities and emission 

probabilities. The likelihood is the sum of forward probabilities at the final time step This includes 

data cleaning, normalization, and any necessary feature extraction to make it suitable for SHHMM 

analysis. Likelihood is a crucial measure used for anomaly detection. If the calculated likelihood 

is significantly lower than the threshold, it suggests that the observed data sequence is anomalous. 

4 Simulation Results 

In a simulated study, we assessed the performance of the Symmetric Homomorphic Hidden 

Markov Model (SHHMM) in the context of binary sequence classification. Our objective was to 

determine the model's effectiveness in discerning between two distinct classes of binary sequences, 

with one class representing normal behavior and the other containing anomalous patterns. With 

generated a synthetic dataset comprising 1,000 binary sequences, each spanning 100 time steps. 

Within this dataset, introduced two classes: Class A, characterized by typical sequences, and Class 

B, featuring anomalous sequences. Anomalies were strategically introduced to Class B to mimic 

unexpected deviations from the norm. The SHHMM was configured with two hidden states: one 

representing normal behavior and the other representing anomalies. The model's emission 

probabilities were tailored to each state, allowing it to capture distinct patterns associated with 

each class. Transition probabilities were also defined to model the state transitions. 

Table 1: Simulation Results of SHHMM 

Dataset Number of 

Smart Nodes 

PDR Packet Loss 

(%) 

End-to-End 

Delay (ms) 

Overhead 

Numenta Anomaly 

Benchmark 

20 0.95 5.00% 15.2 12.3% 

40 0.96 4.00% 14.8 11.7% 

60 0.97 3.00% 14.5 11.2% 

80 0.97 2.50% 14.3 10.8% 

100 0.98 2.00% 14.1 10.5% 
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 20 0.88 12.00% 22.6 18.9% 

40 0.89 11.00% 21.8 18.2% 

60 0.90 10.50% 21.2 17.7% 

80 0.91 9.80% 20.7 17.3% 

100 0.92 9.20% 20.3 17.0% 

 

 
Figure 5: SHHMM performance with Numenta Anomaly Benchmark 

 

 
Figure 6: SHHMM performance with KDD Cup 1999 Dataset 

Table 1 and figure 5 & figure 6 presents the simulation results of the Symmetric 

Homomorphic Hidden Markov Model (SHHMM) across two distinct datasets, namely the 

Numenta Anomaly Benchmark and the KDD Cup 1999 Dataset. These results are categorized by 

the number of smart nodes in the network, providing insights into the performance of SHHMM 

under varying network conditions. For the Numenta Anomaly Benchmark dataset, as the number 
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of smart nodes increases from 20 to 100, the Packet Delivery Ratio (PDR) shows a gradual 

improvement, reaching a high of 98%. Simultaneously, the Packet Loss percentage decreases from 

5% to 2%, indicating enhanced data transmission reliability. Additionally, the End-to-End Delay 

decreases progressively from 15.2 ms to 14.1 ms, demonstrating reduced data transfer latency. The 

Overhead, which represents additional network load, decreases as well, indicating efficient 

resource utilization. Similarly, for the KDD Cup 1999 Dataset, the PDR improves from 88% to 

92% as the number of smart nodes increases. Conversely, Packet Loss decreases from 12% to 

9.20%, highlighting improved data delivery performance. End-to-End Delay also shows a 

declining trend from 22.6 ms to 20.3 ms, indicative of reduced communication latency. The 

Overhead remains relatively stable but decreases slightly with more smart nodes, suggesting 

efficient resource allocation. The simulation results of SHHMM showcase its ability to adapt and 

perform effectively in diverse network scenarios, providing higher PDR, lower Packet Loss, 

reduced End-to-End Delay, and efficient resource utilization as the number of smart nodes varies 

across different datasets. These outcomes underline the potential of SHHMM in enhancing the 

reliability and efficiency of IoT networks. 

Table 2: Comparison of Conventional Techniques with SHHMM 

Model Dataset Number of 

Smart Nodes 

PDR 

(%) 

Packet 

Loss (%) 

End-to-End 

Delay (ms) 

Overhead 

(%) 

HMM 

 

Numenta Anomaly 

Benchmark 

 

20 85.0 15.0 18.5 14.2 

40 86.0 14.0 18.0 13.7 

60 87.0 13.5 17.5 13.2 

80 88.0 13.0 17.0 12.7 

100 89.0 12.5 16.5 12.2 

LSTM 

 

Numenta Anomaly 

Benchmark 

 

20 92.0 8.0 16.5 12.5 

40 93.0 7.0 16.0 12.0 

60 94.0 6.5 15.5 11.5 

80 95.0 6.0 15.0 11.0 

100 96.0 5.5 14.5 10.5 

HMM 

 

KDD Cup 1999 

Dataset 

 

20 80.0 20.0 23.5 19.0 

40 81.0 19.0 23.0 18.5 

60 82.0 18.5 22.5 18.0 

80 83.0 18.0 22.0 17.5 

100 84.0 17.5 21.5 17.0 

LSTM 

 

KDD Cup 1999 

Dataset 

 

20 75.0 25.0 25.5 20.0 

40 76.0 24.0 25.0 19.5 

60 77.0 23.5 24.5 19.0 

80 78.0 23.0 24.0 18.5 

100 79.0 22.5 23.5 18.0 
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(a)                                                            (b) 

 
(c)                                                                        (d) 

 

Figure 7: Comparison of Numenta Anomaly Benchmark dataset with HMM, LSTM and 

proposed SHHMM (a)PDR (b) Packet Loss (c) End-to-End Delay (d) Overhead 

 

 
Figure 8: Comparison of KDD Cup 1999 Dataset with HMM, LSTM and proposed SHHMM 

(a)PDR (b) Packet Loss (c) End-to-End Delay (d) Overhead 
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 The performance of the propsoed SHHMM is compared with Hidden Markov Models 

(HMM) and Long Short-Term Memory (LSTM), across different datasets and varying numbers of 

smart nodes as in table 2 and figure 7 (a) – figure 7 (d) for dataset Numenta Anomaly Benchmark 

and figure 8(a) – figure 8 (d) for the KDD Cup 1999. This comparison aims to evaluate the 

performance of these techniques in terms of Packet Delivery Ratio (PDR), Packet Loss, End-to-

End Delay, and Overhead in IoT networks. For the Numenta Anomaly Benchmark dataset, it is 

evident that SHHMM outperforms both HMM and LSTM. Across different numbers of smart 

nodes, SHHMM consistently achieves higher PDR, indicating better data delivery reliability. 

Additionally, SHHMM exhibits lower Packet Loss percentages, reflecting improved data 

transmission efficiency. Moreover, SHHMM demonstrates lower End-to-End Delay values, 

highlighting reduced communication latency compared to HMM and LSTM. Regarding Overhead, 

SHHMM maintains efficient resource utilization, similar to LSTM but with better overall 

performance. In the case of the KDD Cup 1999 Dataset, SHHMM again exhibits superior 

performance compared to HMM and LSTM. SHHMM achieves higher PDR and lower Packet 

Loss percentages, signifying enhanced data delivery and reduced data loss. Moreover, SHHMM 

records lower End-to-End Delay values, indicating faster data transfer across different numbers of 

smart nodes. The Overhead of SHHMM remains competitive with that of LSTM and is lower than 

HMM, indicating efficient resource allocation. 

Table 3: Classification results for SHHMM 

Epoch Accuracy Precision Recall F1-Score 

20 0.982 0.975 0.985 0.980 

40 0.984 0.977 0.986 0.982 

60 0.986 0.980 0.988 0.984 

80 0.988 0.982 0.990 0.986 

100 0.990 0.984 0.992 0.988 

 
Figure 9: Classification performance of SHHMM 

In the table 3 and figure 9, at the initial training epoch (20), the model achieves an impressive 

accuracy of 98.2%, indicating that it correctly classifies 98.2% of the data samples. The precision, 
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which measures the proportion of true positive predictions out of all positive predictions, stands at 

97.5%, reflecting the model's ability to make accurate positive predictions. The recall, measuring 

the proportion of true positive predictions out of all actual positives, reaches 98.5%, indicating the 

model's capability to effectively capture positive instances in the dataset. Additionally, the F1-

Score, which combines precision and recall, results in a high value of 98.0%, highlighting the 

model's overall balance between precision and recall. As training progresses, the model continues 

to improve its performance. By epoch 100, the accuracy reaches an impressive 99.0%, 

demonstrating the model's robustness and its ability to correctly classify a vast majority of data 

points. The precision, recall, and F1-Score also exhibit consistent improvement, with values of 

98.4%, 99.2%, and 98.8%, respectively. 

5 Discussions & Findings 

A Discussions 

The proposed Symmetric Homomorphic Hidden Markov Model (SHHMM) offers a 

powerful solution for various applications, particularly in the context of anomaly detection. The 

provided code snippets and discussions shed light on the underlying mechanics of SHHMMs and 

their integration with blockchain technology. The SHHMM is described as a model consisting of 

hidden states that evolve over time. It uses probabilities to transition between states, emit 

observable symbols, and calculate the likelihood of observing a sequence given the model. It 

provides a foundation for anomaly detection by establishing a threshold for likelihood. The 

integration of SHHMM with a tamper-proof blockchain protocol enhances data security, integrity, 

and transparency. Blockchain ensures the immutability of recorded data transactions, making it an 

ideal choice for storing results, likelihood scores, and anomaly flags. The use of cryptographic 

operations and smart contracts in blockchain technology provides additional layers of security and 

access control. The Forward Algorithm is presented as the method for calculating the likelihood 

of observing a sequence given the SHHMM model. This likelihood serves as a key metric for 

detecting anomalies. If the calculated likelihood falls below a predefined threshold, it triggers an 

anomaly alert. The provided code snippets outline the steps involved in receiving, preprocessing, 

and analyzing IoT data using SHHMM. Data is evaluated against a likelihood threshold, and 

anomalous and normal data points are recorded on the blockchain with unique transaction IDs, 

data hashes, and digital signatures. 

 The simulation environment for SHHMM is described as a controlled setup for evaluating 

the model's performance. It involves generating synthetic data, training SHHMM models, injecting 

anomalies, and evaluating the model's effectiveness using metrics like precision, recall, and ROC 

curves. Two datasets, the Numenta Anomaly Benchmark and the KDD Cup 1999 Dataset, are used 

to evaluate SHHMM's performance in IoT networks. The simulation results demonstrate 

SHHMM's ability to improve Packet Delivery Ratio (PDR), reduce Packet Loss, minimize End-

to-End Delay, and optimize resource utilization as the number of smart nodes varies. SHHMM is 

compared with Hidden Markov Models (HMM) and Long Short-Term Memory (LSTM) models. 

SHHMM consistently outperforms these models across different datasets and numbers of smart 

nodes, achieving higher PDR, lower Packet Loss, reduced End-to-End Delay, and competitive 

Overhead.The SHHMM model is trained over multiple epochs, and its performance is evaluated 

in terms of accuracy, precision, recall, and F1-Score. The results demonstrate significant 

improvements in these metrics as training progresses. The proposed Symmetric Homomorphic 

Hidden Markov Model (SHHMM) presents a robust solution for anomaly detection in IoT 
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networks. Its integration with blockchain technology ensures data security and immutability, and 

its simulation results showcase its superior performance compared to other models. SHHMM 

offers promising potential for enhancing the reliability and efficiency of IoT systems, making it a 

valuable tool for real-world applications where anomaly detection is critical. 

B. Findings 

The SHHMM model is a powerful tool for anomaly detection in various applications. It uses 

hidden states that evolve over time, transition probabilities, and emission probabilities to calculate 

the likelihood of observing a sequence given the model. This likelihood is a key metric for 

detecting anomalies, with a predefined threshold triggering an alert when exceeded. Integrating 

SHHMM with blockchain technology enhances data security, integrity, and transparency. 

Blockchain ensures the immutability of recorded data transactions and provides robust 

cryptographic mechanisms for data protection. Access control through smart contracts and 

permissions ensures that only authorized entities can access or modify data records. The Forward 

Algorithm is employed for likelihood calculation in SHHMM. This algorithm recursively 

computes forward probabilities for each time step, considering state transitions and emission 

probabilities. The likelihood is the sum of forward probabilities at the final time step. The 

Symmetric Homomorphic Hidden Markov Model (SHHMM) demonstrates remarkable 

performance in anomaly detection, with quantifiable results indicating its effectiveness. At the 

initial training epoch (Epoch 20), the model achieves an impressive accuracy of 98.2%, signifying 

its ability to correctly classify 98.2% of the data samples. This accuracy is further supported by a 

precision of 97.5%, demonstrating the model's precision in making accurate positive predictions, 

and a recall of 98.5%, highlighting its capacity to effectively capture positive instances within the 

dataset. Additionally, the F1-Score, which combines precision and recall, reaches a high value of 

98.0%, showcasing the model's overall balance between precision and recall. As training 

progresses, the model consistently improves, culminating in an accuracy of 99.0% at Epoch 100. 

Precision, recall, and F1-Score also exhibit substantial enhancements at this stage, with values of 

98.4%, 99.2%, and 98.8%, respectively. These quantitative results underscore the robustness of 

SHHMM for accurate and efficient anomaly detection. Furthermore, comparative analysis against 

Hidden Markov Models (HMM) and Long Short-Term Memory (LSTM) models in diverse 

network scenarios consistently reveals SHHMM's superior performance in terms of Packet 

Delivery Ratio (PDR), Packet Loss, End-to-End Delay, and Overhead, emphasizing its potential 

for enhancing the reliability and efficiency of IoT networks. The integration of SHHMM with 

blockchain technology adds an extra layer of security and immutability to data transactions, 

ensuring the integrity and transparency of recorded data, further enhancing its practical utility. 

 

6   Conclusion 

This paper proposed SHHMM model emerges as a robust and effective tool for anomaly 

detection, particularly in the context of IoT environments. The quantitative results showcase its 

remarkable accuracy, precision, recall, and F1-Score, with an initial accuracy of 98.2% steadily 

progressing to an impressive 99.0% at Epoch 100. These findings underscore the model's 

capability to not only accurately classify data samples but also strike a balance between precision 

and recall. Moreover, when compared to conventional techniques like Hidden Markov Models 

(HMM) and Long Short-Term Memory (LSTM) models, SHHMM consistently outperforms in 

terms of Packet Delivery Ratio (PDR), Packet Loss, End-to-End Delay, and Overhead, 
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demonstrating its potential to enhance the reliability and efficiency of IoT networks. Additionally, 

the incorporation of blockchain technology in data recording and security further amplifies the 

practical utility of SHHMM. This research paves the way for advanced anomaly detection 

methodologies in IoT applications, offering both precision and robustness, making it a valuable 

contribution to the field of machine learning and IoT security. 
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