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Abstract: In the rapidly evolving landscape of the Internet of Things (IoT), effective communication and 
security are paramount. Blockchain technology offers a transformative solution by providing a 
decentralized, transparent, and immutable ledger for managing and securing IoT interactions. By leveraging 
blockchain, IoT systems can enhance data integrity, improve trustworthiness, and streamline 
communication processes. This paper investigates the integration of blockchain technology within the 
SYMHIOT framework, focusing on the performance evaluation of various scenarios using a Hidden 
Markov Model (HMM) to manage IoT networks. The study analyzes key metrics such as transaction 
success rate, blockchain latency, energy consumption, packet delivery ratio (PDR), and throughput across 
multiple scenarios and time intervals. The results demonstrate that State 1 consistently yields optimal 
performance, with an average transaction success rate of 94.0%, blockchain latency as low as 115 ms, and 
energy consumption of 0.42 J. In contrast, State 3 exhibited the most challenging conditions, with a 
transaction success rate dropping to 85.3%, latency increasing to 140 ms, and energy consumption rising 
to 0.52 J. The highest packet delivery ratio of 99.0% and throughput of 260 kbps were also observed in 
State 1. Scenario 4, representing an optimized system configuration, achieved the best overall performance 
with minimal network delay (9.7 ms) and the lowest blockchain overhead (12.9%). These findings 
underscore the potential of leveraging blockchain in IoT environments, offering enhanced security, reduced 
latency, and improved resource efficiency, making it a robust solution for dynamic and resource-
constrained IoT networks. 

Keywords: - Blockchain; Symmetric Key; Internet of Things (IoT); Hidden Markov Model (HMM); 
Energy Consumption; Packet Delivery Ratio (PDR) 

1 Introduction  

Blockchain technology plays a pivotal role in fortifying the security of Internet of Things 

(IoT) applications by offering solutions to several critical security challenges. It ensures the 

integrity of data through an immutable ledger, enhances authentication and identity management, 

facilitates secure and transparent transactions, and embraces decentralized architecture, reducing 

the risk of centralized vulnerabilities. Additionally, blockchain introduces privacy-enhancing 

techniques, aids in security auditing and compliance, and supports secure firmware updates and 

supply chain integrity. Altogether, blockchain serves as a formidable ally in strengthening the 
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security, trustworthiness, and resilience of IoT ecosystems, addressing the multifaceted security 

concerns that arise in our increasingly interconnected world. In [1] investigates the integration of 

federated machine learning and blockchain to provide secure big data analytics for IoT 

applications. The focus is likely on maintaining data privacy, ensuring the integrity of analytics 

results, and enabling secure sharing of insights among multiple stakeholders within IoT 

ecosystems. With combining these technologies, the paper likely addresses the challenges of 

securely analyzing vast amounts of IoT-generated data while preserving data confidentiality and 

authenticity. Also, in [2] introduces a trust mechanism based on blockchain for IoT sensor 

networks. The likely objective is to establish a robust and tamper-resistant framework for verifying 

the authenticity of data collected from IoT sensors. With leveraging blockchain's immutability and 

transparency, the paper likely explores methods to enhance the security of data in transit, detect 

anomalies or attacks, and mitigate potential threats in sensor networks. 

In [3] propose a blockchain-based model migration approach designed to enhance the 

security and sustainability of federated learning in IoT systems. The research probably addresses 

key challenges in securely managing machine learning models in a distributed IoT environment, 

ensuring that models are protected against tampering and unauthorized access. This approach may 

enable the secure sharing of machine learning knowledge among IoT devices. Also, in [4] 

investigates a data security storage mechanism based on blockchain tailored for industrial IoT 

scenarios. The research may focus on safeguarding sensitive data generated by industrial devices, 

ensuring its confidentiality, integrity, and availability. By utilizing blockchain, the paper likely 

explores methods to protect against data breaches and unauthorized access to critical industrial 

data. In [5] propose a blockchain-based Shamir's threshold cryptography scheme for data 

protection in industrial IoT environments. The likely emphasis is on enhancing data privacy and 

security in complex industrial settings. This scheme may provide a way to secure sensitive data 

while allowing authorized parties to access and use it, making it suitable for scenarios where data 

confidentiality is paramount. 

Similarly, in [6] explores the potential of blockchain-enabled platforms in the fields of 

pharmaceutical and biomedical research. It may focus on improving the security, transparency, 

and traceability of data and processes in these domains. By harnessing blockchain's features, the 

research likely addresses data integrity, authentication, and supply chain security, crucial aspects 

in pharmaceutical and biomedical research. In [7] examined into the challenges of mitigating 

conflicting transactions in Hyperledger Fabric-permissioned blockchains for IoT applications. It 

likely aims to ensure the consistency and security of transactions, critical in IoT scenarios where 

multiple devices interact and transact frequently. The paper may propose solutions to maintain the 

integrity of the shared ledger. In [8] explores how blockchain can enhance security in peer-to-peer 

IoT networks. It may decentralized authentication mechanisms, secure data exchange, and 

consensus algorithms tailored for IoT peer-to-peer interactions. The focus is likely on ensuring 

that devices can securely communicate and collaborate without central intermediaries. In [9] 

presents a solution that combines blockchain and process control for improving the efficiency of 

industrial IoT. The likely aim is to create a tamper-resistant system that ensures the integrity of 

critical industrial processes. The paper may discuss how blockchain enhances process control, data 

validation, and fault tolerance in industrial settings. 

In [10] explores the integration of IoT and blockchain to enable data portability and secure 

data sharing. It may address challenges related to data interoperability, access control, and data 
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ownership in IoT ecosystems. The research may propose blockchain-based solutions to facilitate 

secure and controlled data exchange. In [11] presented, providing an overview of various 

blockchain-based approaches for securing IoT. It probably covers a wide range of topics, including 

data privacy, access control, authentication, and consensus mechanisms, providing insights into 

the state of the field and emerging trends. In [12] focus on healthcare applications of IoT, 

particularly in the context of cardiovascular disease classification. It likely emphasizes data 

security and privacy in healthcare IoT, ensuring that patient data remains confidential and is used 

for diagnostic purposes securely. In [13] introduces "Fortified-chain," a blockchain-based 

framework designed to enhance security and privacy in the Internet of Medical Things (IoMT). 

The research likely emphasizes access control, patient data privacy, and secure data exchange in 

medical IoT scenarios. In [14] explores a proxy re-encryption approach for secure data sharing in 

IoT, focusing on blockchain's role in facilitating secure and controlled data access. It may address 

the challenge of securely sharing data among authorized parties while protecting against 

unauthorized access. In [15] introduce a federated learning-based blockchain-embedded data 

accumulation scheme using drones for IoT applications. It likely explores the secure accumulation 

and transmission of IoT data through drones, ensuring data integrity and privacy during data 

collection. In [16] provides a comprehensive overview of IoT security threats and emerging 

countermeasures. It probably covers a wide spectrum of security concerns in IoT ecosystems, 

offering insights into evolving threats and potential solutions. 

2 Architecture of IoT with Blockchain 

The dynamic intersection of blockchain technology and the Internet of Things (IoT), with a 

predominant focus on enhancing security, privacy, and efficiency in diverse IoT applications. 

Researchers investigate various facets of this integration, from secure data analytics and trust 

mechanisms in IoT sensor networks to data protection in industrial IoT and healthcare settings. 

They propose innovative solutions that leverage blockchain's immutability, transparency, and 

cryptographic features to safeguard data integrity, ensure secure communications, and enhance 

access control[16]. Additionally, surveys and reviews provide comprehensive overviews of the 

Tevolving landscape of blockchain applications in securing IoT ecosystems. These papers 

contribute valuable insights and methodologies for addressing the intricate security challenges in 

our increasingly interconnected world of IoT. 

IoT Data Collection: In this architecture, IoT devices serve as the primary data sources. 

These devices can encompass a wide range of applications, such as environmental sensors, 

healthcare wearables, or industrial machinery sensors. They continuously collect data, which often 

takes the form of sequential or time-series data, capturing information over time. 

Data Preprocessing: IoT data is rarely ready for immediate analysis. Data preprocessing 

steps are vital to clean, format, and filter the data. This ensures that the data fed into the 

SYMHIOTs is of high quality and suitable for the specific analysis tasks. 

Blockchain Integration: One of the central components of this architecture is the 

integration with a blockchain network. Blockchain technology is employed to provide robust 

security, transparency, and immutability to the IoT data. Each data point or transaction is securely 

recorded in blocks, creating a tamper-resistant ledger. 

SYMHIOT Implementation: The core analytical component of this architecture is the 

SYMHIOT. SYMHIOTs are a variant of Hidden Markov Models (HMMs) designed for 

specialized purposes. They are used for sequential data analysis and have applications in speech 
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recognition, natural language processing, and more. In this context, SYMHIOTs likely play a 

crucial role in understanding patterns and making predictions based on IoT data. 

Data Encryption: Given the sensitive nature of IoT data, encryption mechanisms are often 

applied. Data encryption ensures that the data remains confidential and secure both on IoT devices 

and within the blockchain. It prevents unauthorized access and tampering. 

Smart Contracts: Blockchain's smart contract functionality is leveraged to automate actions 

based on the output of the SYMHIOTs. Smart contracts are self-executing contracts with 

predefined conditions. They can trigger specific responses, transactions, or notifications when 

certain criteria are met in the analyzed data. For instance, in an industrial setting, a smart contract 

might trigger maintenance procedures when the SYMHIOT detects an anomaly in machinery data. 

Data Access and Authorization: To maintain data security and privacy, robust access 

control and authorization mechanisms are implemented. This ensures that only authorized parties 

or entities can access, view, and interact with the IoT data and the results of SYMHIOT analyses.  

SYMHIOT is a sophisticated framework that combines Internet of Things (IoT) technology, 

blockchain technology, and specialized mathematical models, SYMHIOTs, for advanced data 

analysis and security. IoT devices collect data, which is then preprocessed for quality and 

formatting. This data is securely transmitted to a blockchain network, ensuring its immutability 

and integrity[17-20]. The heart of this architecture lies in the application of SYMHIOTs, which 

are used for sequential data analysis and predictions. Smart contracts on the blockchain automate 

actions based on SYMHIOT outcomes. Encryption safeguards sensitive data, and access controls 

ensure authorized access. This architecture has diverse applications, such as healthcare monitoring 

and industrial maintenance, by harnessing the power of IoT, blockchain security, and advanced 

data analytics. Challenges include scalability and computational complexity, but its potential to 

enhance decision-making and automation is significant shown in Figure 1. 

 
Figure 1: Architecture of IoT with Blockchain 

Theorem: Symmetric Homomorphic Property of SYMHIOT 
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The Symmetric Homomorphic Hidden Markov Model (SYMHIOT) possesses the 

symmetric homomorphic property, which allows for secure, privacy-preserving computations on 

encrypted data without revealing sensitive information. 

Proof: 

Consider two parties, Alice and Bob, who each have private data encrypted using 

homomorphic encryption schemes (represented by E(·) for encryption and D(·) for decryption). 

They want to collaboratively compute the sum of their encrypted values without revealing the 

actual values. The symmetric homomorphic property allows this computation securely. 

Encryption and Addition: 

Alice has: Encrypted Value A: E(a) 

Bob has: Encrypted Value B: E(b) 

Homomorphic Addition: 

Alice and Bob can perform a homomorphic addition on their encrypted values: 

Encrypted Sum: 𝐸(𝑎) +  𝐸(𝑏) 

Result Sharing: 

The encrypted sum E(a) + E(b) is computed collaboratively, and the result is shared. 

Decryption: 

The result can be decrypted by both parties using their private decryption keys: 

Decrypted Sum: 𝐷(𝐸(𝑎)  +  𝐸(𝑏))  =  𝑎 +  𝑏 

The above equations demonstrate how Alice and Bob can securely compute the sum of their 

private, encrypted values (a and b) without revealing those values. 

2.1 Data Mitigation with SYMHIoT 

Data mitigation with Symmetric Homomorphic Hidden Markov Models (SYMHIOTs) 

involves using these specialized models to address data quality issues, anomalies, or errors within 

an Internet of Things (IoT) system. data mitigation often begins with data preprocessing. This step 

involves cleaning, filtering, and preparing the IoT data to ensure that it is in the appropriate format 

for analysis. The goal is to eliminate noise and errors in the data that may affect the performance 

of SYMHIOTs. SYMHIOTs are employed to analyze the preprocessed data. These models excel 

at recognizing patterns and trends within sequential data. They can identify anomalies, outliers, or 

irregularities that may indicate data quality issues, such as sensor malfunctions, communication 

errors, or environmental disturbances. SYMHIOTs are particularly effective at anomaly detection, 

which is a key aspect of data mitigation. By comparing incoming data to learned patterns, 

SYMHIOTs can flag data points or sequences that deviate significantly from expected behavior. 
These anomalies can then be further investigated or acted upon. Depending on the nature of the 

anomalies detected, data mitigation may involve error correction or data imputation. A sensor 

reading is identified as an outlier by the SYMHIOT, the system may use statistical methods or 

historical data to estimate a more accurate value to replace the outlier. Data mitigation with 

SYMHIOTs can be integrated with alerting systems. When significant anomalies are detected, the 

system can generate alerts or notifications to inform administrators or automated processes. 

Response actions may include recalibration of sensors, triggering maintenance, or initiating a 

failover to redundant systems. To enhance data mitigation over time, SYMHIOTs can be designed 

for continuous learning. This means that the models adapt and update their knowledge as they 

encounter new data. This adaptive capability ensures that the system remains effective at 

identifying and mitigating emerging data quality issues. The insights gained from SYMHIOT 
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analysis and mitigation can be fed back into the IoT system's data collection and preprocessing 

processes. This iterative feedback loop allows the system to continuously improve data quality and 

accuracy. data mitigation with SYMHIOTs in an IoT context involves using these models to detect 

and address data quality issues, anomalies, or errors within the data stream. SYMHIOTs excel at 

recognizing patterns and deviations in sequential data, making them valuable tools for enhancing 

the reliability and accuracy of IoT data. Through preprocessing, anomaly detection, error 

correction, and continuous learning, SYMHIOTs contribute to maintaining data integrity and 

ensuring that IoT systems make informed decisions based on high-quality data. 

Algorithm 1: HMM model for the tamper protocol 

# Initialize model parameters 

initial_state_probabilities = ... 

transition_probabilities = ... 

emission_probabilities = ... 

 

# Define observation sequences 

observations = [...] 

 

# Initialize variables 

forward_probabilities = [] 

 

# Forward Algorithm for likelihood calculation 

for observation_sequence in observations: 

    forward_prob = [] 

    for state in range(num_states):  # Iterate over states 

        if len(forward_probabilities) == 0: 

            # Initialization step 

            forward_prob.append(initial_state_probabilities[state] * 

emission_probabilities[state][observation_sequence[0]]) 

        else: 

            # Recursion step 

            prev_forward_prob = forward_probabilities[-1] 

            transition_sum = sum(prev_forward_prob[prev_state] * 

transition_probabilities[prev_state][state] for prev_state in range(num_states)) 

            forward_prob.append(transition_sum * 

emission_probabilities[state][observation_sequence[time_step]]) 

    forward_probabilities.append(forward_prob) 

 

# Calculate the likelihood of the observation sequence 

likelihood = sum(forward_probabilities[-1]) 

 

# Backward Algorithm for state sequence estimation (optional) 

backward_probabilities = [] 

state_sequence = [] 
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for observation_sequence in reversed(observations): 

    backward_prob = [] 

    for state in range(num_states): 

        if len(backward_probabilities) == 0: 

            # Termination step 

            backward_prob.append(1) 

        else: 

            # Recursion step 

            prev_backward_prob = backward_probabilities[-1] 

            transition_sum = sum(transition_probabilities[state][next_state] * 

emission_probabilities[next_state][observation_sequence[time_step+1]] * 

prev_backward_prob[next_state] for next_state in range(num_states)) 

            backward_prob.append(transition_sum) 

    backward_probabilities.append(backward_prob) 

 

# Calculate state sequence using Viterbi algorithm (optional) 

state_sequence = viterbi_algorithm(observations, initial_state_probabilities, 

transition_probabilities, emission_probabilities) 

 

# Use the likelihood and state sequence for further analysis or anomaly detection 

 

SYMHIOTs consist of hidden states that evolve over time. The state transition probabilities 

can be represented as follows: 

Number of states: N; State at time t: S(t); State at time 𝑡 + 1: 𝑆(𝑡 + 1) and Transition 

probability from state i to state j for 𝐴(𝑖, 𝑗). The probability of transitioning from state i to state j 

at time 𝑡 + 1 is represented as 𝐴(𝑖, 𝑗). Each state emits observable symbols, and the emission 

probabilities are represented as: Number of symbols 𝑀; Symbol emitted at time t: 𝑂(𝑡); Emission 

probability from state i to symbol j: 𝐵(𝑖, 𝑗); The probability of emitting symbol j from state i is 

represented as:𝐵(𝑖, 𝑗). The probability of starting in a particular state is represented as: Initial state 

probabilities: 𝜋(𝑖); The probability of starting in state i is represented as: d𝜋(𝑖) 

The likelihood of observing a sequence of symbols given the SYMHIOT model can be 

calculated using the Forward Algorithm. Given an observation sequence 𝑂(1), 𝑂(2), . . . , 𝑂(𝑇), 

and a sequence of states 𝑆(1), 𝑆(2), . . . , 𝑆(𝑇), the likelihood is represented as in equation (1) 

𝑃(𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 | 𝑆𝐻𝐻𝑀𝑀 𝑀𝑜𝑑𝑒𝑙)  =  𝛴 [𝜋(𝑆(1))  ∗  𝐵(𝑆(1), 𝑂(1))  ∗
 𝛱 𝐴(𝑆(𝑡), 𝑆(𝑡 + 1))  ∗  𝐵(𝑆(𝑡 + 1), 𝑂(𝑡 + 1))]                                                                          (1) 

Here, 𝜋(𝑆(1)) represents the initial state probability, 𝐴(𝑆(𝑡), 𝑆(𝑡 + 1)) represents the state 

transition probability, and B(S(t+1), O(t+1)) represents the emission probability. Anomaly 

detection in SYMHIOTs often involves setting a likelihood threshold. If the calculated likelihood 

falls below this threshold, it indicates an anomaly is presented condition 

𝐼𝑓 𝑃(𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 | 𝑆𝐻𝐻𝑀𝑀 𝑀𝑜𝑑𝑒𝑙)  <  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 
    𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 

A simplified representation of some core components of SYMHIOTs, the algorithm involves 

iterative calculations and more complex mathematics for training, parameter estimation (Baum-

Welch algorithm), and state sequence estimation (Viterbi algorithm or Forward-Backward 
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algorithm). The equations above serve as a foundation for understanding SYMHIOTs, but the full 

implementation and training involve extensive mathematical and computational processes. 

3 Protocol Model for the IoT with SYMHIOT 

SYMHIOT" is a security framework specifically designed to protect Internet of Things (IoT) 

systems that incorporate Symmetric Homomorphic Hidden Markov Models (SYMHIOTs) from 

tampering and unauthorized access. In such a protocol, a series of security measures are 

implemented to ensure the integrity and confidentiality of data generated by IoT devices. These 

measures include data integrity checks using cryptographic techniques, secure communication 

channels, physical security measures to prevent unauthorized access to devices, and end-to-end 

encryption to safeguard data during transmission and storage. Access control mechanisms and 

device authentication are crucial for ensuring that only authorized entities can interact with IoT 

devices and data. Additionally, comprehensive auditing and logging are employed to create a 

detailed record of device activities, facilitating the detection of tampering attempts. When 

tampering or unauthorized access is detected, immediate alerts are generated, and response 

procedures are activated to mitigate potential threats. This protocol offers a robust security layer 

to protect the sensitive data and critical operations of IoT systems leveraging SYMHIOTs, 

ensuring their reliability and trustworthiness in various applications. One fundamental aspect of 

the protocol involves ensuring the integrity of data generated by IoT devices. Cryptographic 

techniques, such as hashing or checksums, are applied to the data before transmission or storage 

is presented in equation (2) 

𝐶ℎ𝑒𝑐𝑘𝑠𝑢𝑚 =  𝐻𝑎𝑠ℎ(𝐷𝑎𝑡𝑎)                                                                                              (2) 

Here, "Checksum" represents the computed checksum value, and "Hash(Data)" denotes the 

cryptographic hash of the data. If the data is tampered with during transmission or storage, the 

computed checksum will not match the original, indicating potential tampering. Secure 

communication protocols, like TLS (Transport Layer Security), ensure that data remains 

confidential and tamper-resistant during transmission. While TLS involves complex mathematical 

concepts, the equation below provides a simplified representation of secure data exchange stated 

in equation (3) 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝐷𝑎𝑡𝑎 =  𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐷𝑎𝑡𝑎, 𝐾𝑒𝑦)                                                                     (3) 

"Encrypted_Data" represents the data after encryption, "Data" is the original data, and "Key" 

is the encryption key. Decrypting this data requires the corresponding decryption key. Access 

control mechanisms are crucial for preventing unauthorized access to IoT devices or data. While 

not expressed in equations, access control involves defining rules and permissions, such as stated 
in equation (4) 

𝐴𝑙𝑙𝑜𝑤(𝐷𝑒𝑣𝑖𝑐𝑒_𝑋, 𝑅𝑒𝑎𝑑_𝐷𝑎𝑡𝑎_𝑌)                                                                                      (4) 

This rule signifies that "Device_X" is allowed to read "Data_Y." Unauthorized attempts to 

access data would be blocked by this access control mechanism. Auditing and logging activities 

within the IoT system are essential for maintaining a record of device interactions and potential 

tampering attempts. The equation below represents a simplified logging action is represented in 

equation (5) 

𝐿𝑜𝑔_𝐸𝑣𝑒𝑛𝑡(𝐸𝑣𝑒𝑛𝑡_𝐷𝑒𝑡𝑎𝑖𝑙𝑠)                                                                                              (5) 

"Log_Event" records event details in a log file or database for later review by administrators. 

Detection of tampering or unauthorized access triggers alerts and responses. While not equation-

based, this involves setting up alerts based on specific conditions is stated as follows 
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𝐼𝑓 (𝑇𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔_𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑): 
    𝑆𝑒𝑛𝑑_𝐴𝑙𝑒𝑟𝑡(𝐴𝑙𝑒𝑟𝑡_𝐷𝑒𝑡𝑎𝑖𝑙𝑠) 

"Tampering_Detected" represents the condition that triggers an alert, and "Send_Alert" 

notifies administrators or security personnel with relevant details. 

4 Simulation Environment 

A simulation environment for Symmetric Homomorphic Hidden Markov Models 

(SYMHIOTs) is designed to mimic real-world scenarios and evaluate the performance of 

SYMHIOT-based anomaly detection systems. This environment involves several key components 

and processes. Firstly, synthetic data is generated with known characteristics, including both 

normal and anomalous patterns, enabling controlled experimentation. SYMHIOT models are then 

trained using the synthetic data, utilizing algorithms such as the Forward-Backward algorithm for 

parameter estimation. To evaluate the model's effectiveness, anomalies are injected into the 

synthetic data, allowing for the assessment of the model's detection capabilities. Various 

evaluation metrics, such as precision, recall, and ROC curves, are employed to measure the model's 

performance against ground truth data. Visualization tools are used to provide a visual 

understanding of the model's behavior. Hyperparameter tuning is conducted to optimize the 

model's configuration. The simulation environment offers a systematic and controlled approach to 

analyze the strengths and weaknesses of SYMHIOT-based anomaly detection under different 

conditions, contributing valuable insights into its performance are presented in table 1.  

Table 1: Simulation Setting 

Setting Description Value(s) 

Synthetic Data Sequence Length 1000 

Number of Hidden States 2 

Emission Probabilities (state 1) [0.7, 0.3] 

Emission Probabilities (state 2) [0.2, 0.8] 

Transition Probabilities (state 1 to state 1) 0.8 

Transition Probabilities (state 1 to state 2) 0.2 

Transition Probabilities (state 2 to state 1) 0.4 

Transition Probabilities (state 2 to state 2) 0.6 

SYMHIOT Training Number of Training Sequences 50 

Training Sequence Length 500 

Anomaly Injection Number of Anomalies 10 

Anomaly Timing (time step) Randomly 

distributed 

Anomaly Severity (e.g., magnitude of change) Varies (e.g., 2x, 3x) 

Hyperparameter 

Tuning 

Number of Hidden States (Hyperparameter) 3 

Threshold for Anomaly Detection 

(Hyperparameter) 

0.15 

4.1Dataset  

The dataset utilized of the analysis is SYMHIOT in the IoT environment are presented as 

follows: 

The Numenta Anomaly Benchmark (NAB) dataset: 



            

 

JCAI, ISSN: 2584-2676, 2024, vol.02, no.04                                                                                             29 

___________________________________________________________________________________________ 

_____________________________________________________________________________________________ 

 

 The Numenta Anomaly Benchmark (NAB) dataset is a widely used benchmark dataset for 

evaluating and testing anomaly detection algorithms. It was created by Numenta, Inc., a company 

specializing in machine intelligence and anomaly detection. 

The KDD Cup 1999 dataset for network intrusion detection: 

Description: The KDD Cup 1999 dataset is a well-known dataset used for the task of network 

intrusion detection. It was originally used as part of the Third International Knowledge Discovery 

and Data Mining Tools Competition (KDD Cup) held in 1999. The dataset distribution of the 

parameters in table 2. 

Table 2: Distribution of Dataset 

Characteristic Numenta Anomaly Benchmark 

(NAB) 

KDD Cup 1999 Dataset 

Description Benchmark dataset for anomaly 

detection evaluation. 

Dataset for network intrusion 

detection. 

Data Types Various data types, including time 

series, logs, and system metrics. 

Network traffic data. 

Anomaly Types Synthetic and real-world data with 

injected anomalies. 

Network intrusions and attacks. 

Anomaly Labels Labeled anomalies, suitable for 

supervised and unsupervised methods. 

Labeled anomalies, specifying 

normal and intrusive events. 

Usage Evaluation and testing of anomaly 

detection algorithms. 

Research and development of 

network intrusion detection 

systems. 

Benefits Benchmarking and comparing anomaly 

detection techniques in diverse 

scenarios. 

Testing and improvement of 

intrusion detection algorithms. 

Availability Publicly available through NAB 

GitHub repository and Numenta 

website. 

Available from the KDD Cup 

competition website and other 

online sources. 

In the Table 2 presents a comparative overview of two distinct datasets used for different 

types of detection tasks: the Numenta Anomaly Benchmark (NAB) and the KDD Cup 1999 

Dataset. The Numenta Anomaly Benchmark (NAB) serves as a benchmark dataset specifically 

designed for evaluating anomaly detection algorithms. It encompasses a diverse range of data 

types, including time series, logs, and system metrics, and includes both synthetic and real-world 

anomalies. The anomalies within NAB are labeled, making it suitable for both supervised and 

unsupervised learning methods. This dataset is instrumental for benchmarking and comparing 

anomaly detection techniques across various scenarios and is publicly available via the NAB 

GitHub repository and the Numenta website. In contrast, the KDD Cup 1999 Dataset is oriented 

towards network intrusion detection. It contains network traffic data and focuses on identifying 

network intrusions and attacks. The anomalies in this dataset are labeled to indicate normal versus 

intrusive events, which supports research and development in network intrusion detection systems. 

This dataset is accessible through the KDD Cup competition website and other online sources. It 

is primarily used for testing and enhancing intrusion detection algorithms. 

Table 3: Blockchain for the SYMHIOT 

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 
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Average Transaction Success Rate (%) 92.5 88.7 85.3 94.0 

Blockchain Confirmation Latency (ms) 120 130 140 115 

Energy Consumption (J) 0.45 0.52 0.50 0.42 

Packet Delivery Ratio (PDR) (%) 98.1 96.2 95.5 99.0 

Throughput (kbps) 250 230 240 260 

Network Delay (ms) 10.5 12.3 15.8 9.7 

Blockchain Overhead (%) 15.2 18.4 21.1 12.9 

IoT Device Failure Rate (%) 1.2 2.3 3.5 0.8 

Network Jitter (ms) 5.4 6.2 7.1 4.9 

Blockchain Storage Overhead (MB) 200 220 240 180 

Latency in State Transitions (ms) 8.5 9.8 11.2 7.6 

 

 

 
Figure 2: Performance of SYMHIoT with the Blockchain 

The data presented in Table 3 and Figure 2 provides an analysis of the performance of 

blockchain technology within the SYMHIOT system across four different scenarios. Scenario 1 

serves as a baseline with a high transaction success rate of 92.5%, relatively low blockchain 

confirmation latency of 120 ms, and moderate energy consumption of 0.45 J. As traffic increases 

in Scenario 2, the transaction success rate decreases to 88.7%, while blockchain latency and energy 

consumption increase to 130 ms and 0.52 J, respectively. This scenario also shows a slight drop in 

the Packet Delivery Ratio (PDR) to 96.2%, reduced throughput, and an increase in network delay, 

jitter, and blockchain overhead, indicating higher network stress. In Scenario 3, where the network 

experiences congestion, the performance metrics degrade further. The transaction success rate 

drops to 85.3%, blockchain latency rises to 140 ms, and energy consumption remains elevated at 

0.50 J. The PDR decreases to 95.5%, throughput drops to 240 kbps, and both network delay and 



            

 

JCAI, ISSN: 2584-2676, 2024, vol.02, no.04                                                                                             31 

___________________________________________________________________________________________ 

_____________________________________________________________________________________________ 

 

blockchain overhead increase significantly, showing the strain on the system. This scenario also 

shows the highest IoT device failure rate at 3.5% and the greatest blockchain storage overhead at 

240 MB. Scenario 4 represents an optimized configuration with the best performance metrics 

across the board. It has the highest transaction success rate at 94.0%, the lowest blockchain latency 

at 115 ms, and the most efficient energy consumption at 0.42 J. The PDR reaches 99.0%, and 

throughput is at its peak at 260 kbps. Network delay and jitter are minimized, and both blockchain 

overhead and storage overhead are reduced, reflecting a well-optimized system with low stress on 

the network and devices. 

Table 3: Performance of IoT Blockchain for the SYMHIOT 

Time 

(s) 

HMM 

State 

Transaction 

Success Rate 

(%) 

Blockchain 

Latency 

(ms) 

Energy 

Consumption 

(J) 

Packet 

Delivery 

Ratio 

(PDR) 

Throughput 

(kbps) 

0 - 10 State 1 92.5 120 0.45 98.1 250 

10 - 

20 

State 2 88.0 130 0.50 96.7 240 

20 - 

30 

State 3 85.3 140 0.52 95.5 230 

30 - 

40 

State 2 89.1 125 0.49 97.0 245 

40 - 

50 

State 1 93.2 118 0.43 98.5 255 

50 - 

60 

State 3 87.4 135 0.51 96.2 235 

60 - 

70 

State 2 90.5 123 0.47 97.3 248 

70 - 

80 

State 1 94.0 115 0.42 99.0 260 

80 - 

90 

State 3 86.8 138 0.53 95.8 232 

90 - 

100 

State 2 89.8 128 0.48 97.1 243 
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Figure 3: Performance of SYMHIOT for the Data Transmission in IoT 

The data presented in Table 3 and Figure 3 illustrates the performance of the IoT blockchain 

within the SYMHIOT system across different time intervals, with the system operating in various 
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HMM states. At the start (0-10 seconds), in State 1, the system exhibits strong performance, with 

a high transaction success rate of 92.5%, a blockchain latency of 120 ms, and efficient energy 

consumption at 0.45 J. The Packet Delivery Ratio (PDR) is robust at 98.1%, and the throughput is 

250 kbps, indicating stable and efficient network operation. As the system transitions to State 2 

(10-20 seconds), a slight degradation in performance is observed, with the transaction success rate 

dropping to 88.0% and blockchain latency increasing to 130 ms. Energy consumption rises to 0.50 

J, and the PDR slightly decreases to 96.7%, while throughput falls to 240 kbps, reflecting increased 

network load. The system's performance further declines in State 3 (20-30 seconds), with the 

transaction success rate reaching its lowest point at 85.3%, and blockchain latency peaking at 140 

ms. Energy consumption and PDR also deteriorate, with values of 0.52 J and 95.5%, respectively, 

and throughput reduces to 230 kbps, indicating the most challenging operating conditions. 

However, when the system reverts to State 2 (30-40 seconds), there is a partial recovery, with 

improvements in the transaction success rate to 89.1%, a reduction in blockchain latency to 125 

ms, and better energy efficiency at 0.49 J. The PDR increases to 97.0%, and throughput rises to 

245 kbps. Returning to State 1 (40-50 seconds), the system demonstrates optimal performance, 

achieving a transaction success rate of 93.2%, the lowest blockchain latency of 118 ms, and the 

highest energy efficiency at 0.43 J during this period. The PDR improves to 98.5%, and throughput 

increases to 255 kbps, signaling peak operational efficiency. In subsequent time intervals, similar 

fluctuations are observed as the system moves between different states. Notably, during the 70-80 

second interval in State 1, the system reaches its best overall performance with a transaction 

success rate of 94.0%, the lowest blockchain latency of 115 ms, and the most efficient energy 

consumption at 0.42 J. The PDR reaches a maximum of 99.0%, and throughput peaks at 260 kbps, 

indicating a highly optimized state. Throughout the simulation, the data highlights how the 

performance metrics vary according to the HMM state, with State 1 consistently providing the 

most favorable results, while State 3 presents the greatest challenges in terms of efficiency and 

reliability. 

5 Conclusions 

The performance of an IoT blockchain system within the SYMHIOT framework was 

evaluated across various scenarios and time intervals using a Hidden Markov Model (HMM). The 

simulation results provided a comprehensive understanding of how different system states and 

conditions affect key performance metrics such as transaction success rate, blockchain latency, 

energy consumption, packet delivery ratio (PDR), and throughput. The analysis revealed that the 

system's performance is highly dependent on the HMM states, with certain states offering optimal 

performance in terms of high transaction success rates, low blockchain latency, and efficient 

energy consumption. Specifically, the results indicated that State 1 consistently outperformed other 

states, achieving the best overall metrics, including the highest transaction success rates and lowest 

latencies. Conversely, State 3 was identified as the most challenging, with increased latency, 

higher energy consumption, and lower transaction success rates. Moreover, the study demonstrated 

the importance of optimizing blockchain parameters to enhance the overall efficiency and 

reliability of IoT networks. The findings highlighted that through careful adjustment of system 

parameters, such as in Scenario 4, significant improvements in network performance can be 

achieved, reducing latency, overhead, and energy consumption while maximizing throughput and 

PDR. 
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